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ABSTRACT

This dissertation investigates different types of disorder problems by

using sequential procedures for on-line implementation. The problem is

considered withia the framework of detecting abrupt changes in an observed

random process when the disorder can occur at unknown times. 'Ine focus of

this work is on quickest detection methods for cumsum procedures

implemented for different parametric and nonparametric nonlinearities and

their performance evaluation. Both the non-Bayesian (Maximum-

Likelihood) and the Bayesian frameworks are presented but the focus is

mainly on non-Bayesian methods for which detailed analysis is provided.

The use of Brownian motion approximations is also included and provides

an additional viewpoint of analyzing the performance for both the non-

Bayesian and Bayesian methods.
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L THE DISORDER AND CHANGE DETECTION PROBLEM

FORMULATION-AN OVERVIEW

A. INTRODUCTION

This dissertation presents sequential decision methods both in the non-

Bayesian (maximum likelihood) framework and in the Bayesian framework.

The focus is mainly on non-Bayesian methods, where the goal is to detect, as

quickly as possible, changes in statistical models of a random process when

these changes can occur at a random time, while the false alarm rate should

be lower bounded by some given constant.

In the classical detection framework such procedures were considered by

Wald (Wald, 1947), for which the binary hypothesis framework was

developed under the assumption was that all the observations come from

one model or from an alternative one. It was not until Page's work (Page,

1954) in the non-Bayesian framework and Shiryayev (Shiryayev, 1961, 1963,

1965) in the Bayesian framework that the problem was extended to detecting a

change from one statistical model to a second model. Lorden (Lorden, 1971)

showed that the cumulative sum tests as proposed by Page are asymptotically

optimal when the mean time between false alarm tends to infinity, in the

sense of minimizing the average delay time for detection. Recently, Pollak

(Pollak, 1985) proved an optimality property for the Shiryayev rule.

Two types of problems depend on the time element. The first is the

disorder problem in which the given observations correspond to one

statistical model until some unknown time after which the samples

I



correspond to another statistical model. Hereby we will use the notations

disorder and change as synonyms, even though a disorder is referred to as a

general change in density which describes the change in the statistical

behavior of the model, a change will refer most of the time to changes in

specific parameters like mean variance, etc. The second problem is the

transient problem in which the disorder decays after some time. In this

dissertation we will focus only on the disorder (change) problem.

When a disorder occurs, the random variables we are concerned with are

the change time and the model parameters after the change. As will be

presented throughout this dissertation, the detection process refers to

detecting the change as quickly as possible while ensuring infrequent false

alarms, while the estimation process refers to estimating the change time and

the model parameters after the change. This dissertation focuses on the

detection element. The problem of joint estimation of the change time and

the model parameters is also addressed and shown to appear in an explicit

closed form in certain cases.

The question of where do change detection problems occur is next

introduced. Three typical situations in which change detection is a critical

component are considered. The first, in which the detection is used to

produce alarms during the monitoring of dynamical systems, such as failures

in sensors (Willsky, 1976,1986), detection of tsunamis and earthquake

prediction (Nikiforov, 1986), and detection of production failures (Assaf and

Ritov, 1988). Many more applications in industrial and military

environments can be considered. Survey papers for fault detection methods

are given by Isermann (Isermann, 1984), and Gertler (Gertler, 1988) The
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second situation arises in the area of adaptive algorithms, were the presence

of abrupt non-stationarities in the signal causes severe errors in adapting the

gains of the recursive algorithms. Thus, an abrupt change detection

procedure is needed to imp.3)ve the tracking capability of the algorithm. For a

complete survey see Ljung and Gunnarsson (Ljung and Gunnarsson, 1990).

Finally, the third type of application occurs when the change detection

algorithm is considered as an integral part of the modeling of a signal or a

system. The most popular applications are segmentation of speech signals

using switching parameter methods within AR models (Andre-Obrecht, 1988)

or various geophysical signals (Nikiforov, 1986). In such cases switching

methods within the transition matrix of state-space models (Tugnait, 1986), or

a modified Kalman filter is used to cope with changes modeled as abrupt

transitions in the measurement matrices (Shumway, 1990). Also, the

problem of outlier detection by modifying the Kalman filter was introduced

by Pena and Guttman (Pena and Guttman, 1988).

B. THE DISORDER PROBLEM FORMULATION

1. The General Disorder Problem

The change detection problem is presented within the hypothesis

testing framework, thus, requiring some statistical knowledge about the tested

hypotheses which in turn are based upon statistical models of the hypotheses

before and after the disorder. The model based framework is rich enough to

serve as a basis for the problem formulation, resulting in parametric type

tests. As it will be presented later, certain types of change detection

procedures known as cumulative sum or cumsum procedures are able to

3



cope with the parametric and nonparametric forms as well. Within this

framework four types of change detection problems will be considered.

Let H0 and H, be the two (simple) hypotheses, corresponding to two

possible probability distributions PO and P1 on the observation space x. If a

parametric notation is to be used, then the notation P(x I o) and P(x 101) or

Po(x) and Pi(x) will be used. The observations x1 , x 2, ... are assumed to be

independent random variables.

Type 1: Classical Binary Hypothesis Testing

This problem was considered by Wald (Wald, 1947) and can be written as:

H0: x - POI

versus (1-1)

HI: x - P 1,

where the notation "x - P" denotes the condition that x has distribution P. In

this problem there is no time index, hence, no direct formulation of a change.

Type 2: Disorder Formulation

This problem was considered by Page (Page, 1954) and can be presented in

following manner. Let v be the unknown time when the change from PO to

P1 occurred. Let Pv denote the probability when the change occurred at the Vh

observation. Let Po denote the probability there is no change, i.e., v =

The problem can be presented as

H0 : x,x 2 ,... - P0  no change

versus

4



Hv: x11x2 ,"',Xv- 1  - P0. (1-2)

change at time v

XvXv+L,"" - P1.

If the observation record is finite and equal to say s, the detection problem

becomes a multiple hypothesis testing, since the test looks" for at least one of

the H, (1 < v < s) to hold against H0 .

Type 3: Transient and outliers formulation:

Consider two change times v and r such that

HO: xj, x2,... -P 0

versus

Hj: Xl, x2, ... , xv-1 - Po

XV, XV-l,.. X-1 - P1

xT, XT-.. -PO. (1-3)

The same arguments about composite testing can be applied here. Notice that

this framework can be extended to the so-called multiple disorder problem, in

which the observations Xr, Xz+,, ... - P2 (P2 being another probability density on

the observation space).

Type 4: Initial Condition Disruption

For model based detection schemes based upon state-space, ARMA, etc., the

initial condition is a part of the statistical model. Hence, besides the ordinary

way to model the statistical change as a change from PO to P1, a certain class of

changes can be modeled as a result from changes in the initial condition.

This problem is also time related since the change might occur at an

unknown time.

5



Once H, is decided, i.e., disorder detected, further questions arise, such

as estimating the change a.me v, possibly to estimate 0, and 01, and in some

cases to diagnose which type of change actually occurred. Thus, the oo~tection

and estimation following the detection problems being two separate issues

can be coupled, but it is important to distinguish between them.

Both off line (n fixed) and on-line (n growin.) algorithms can be

designed for solving such types of problems, a id as shown in the sequel differ

substantially, both from the change defection formulation and from the

performance evaluation point of view.

2. Solution Methods

The solution for such problems is a function of several factors.

a. Off-line versus On-line Tests

In the off-line formulation, a given finite record is given

x1, x 2, ... , XT and a test statistic gT =g(xi, x2, ... , XT) > A has to decide whether or

not the change occurred. In the on-line formulation, the test statistic gt =

g(x1, x 2, ... , Xt) > X has to reach a decision the first time when gt exceeds a

threshold A.

b. Criterion

For the classical detection problem (1-1), the criteria in the sense

of Neyman-Pearson (Ghosh, 1970), is based on a test which maximizes the

power or the probability of detection (the probability of deciding H when H1

is actually true) subject to the constraint that the size or the false-alarm

probability (the probability of deciding H1 when H0 is true) is less than or

equal to a given value.

6



As seen from equation (1-2), in the off-line framework, the

change detection problem involves multiple hypotheses testing, ior which

the Neyman-Pearson lenmma is not valid (Ghosh, 1970). Therefore the test in

this case cannot be defined as one of maximizing the power since H 1 is not

reduced to a simple distribution but a set of distributions. In such cases, the

best property for a test is said to be Uniformly Most Powerful (UMP), i.e., tests

which have the highest detection probability for each distribution of the

alternative hypotheses H 1. Therefore no UMP tests exist for change detection

problems. In this case, those UMP properties can be recovered by using

asymptotic analysis (Deshayes and Picard, 1986). In order to cope with the

performance analysis of test statistic functions the following definition is

needed.

Definition: Stopping time. Let xi, x-, ... be the sequence of independent

random variables. The nonnegative integer valued random variable N is

said to be a stopping time for the sequence if the event (N = n} is independent

of Xn+l, Xn-2, .... 0

Hence, the event (N = n) corresponds to stopping after having observed

x1, ... x,, and thus must be independent of the values of the random variables

yet to come (Ross, 1989).

For on-line processing, the criteria is modified. Notice that by

using the formulation (1-2) for a large enough number of observations, the

change will be detected with probability one. Thus, a natural criterion should

be the delay for detection, subject to the constraint that the size of thu test is

upper bounded by a given threshold (Page 1954, Shiryayev 1963). Lorden
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(1971) and Nikiforov (O83) use a slightly different version of the delay for the

on-line problem:

Let S, denote the test statistic at time n. Let N be the stopping

rule, and let Xn be a generalized threshold. Then:

N = inf{n: S,, > Xn) (1-4)

dpfines the stopping rule and stopping time. See Figure 1.1.

x. Observations

Dloint w change

V n

S Stopping Rule

AL-r. &L -

Change

detection

v N n

Figure 1.1. General Characteristics of the Detection Model. The observation
sequence {xn} is transformed into a sequence (Sn). A change in the model
structure of (x,, results in a cumulative departure of (Sn). The change is

detected by comparison of {Sn) with a generalized threshold (;An)
(fron Segen and Sanderson, 1980).
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The worst case average delay D (Lorden, 1971) is defined by

D = E{N IHl} = su esssupEv{(N - V+ 1)+Xl,X 2 ,....Xv_} (1-5)

where (a) + = max(Oa),

where E, denotes -he expectation of the change time under the probability

law Pv, where Pv denotes the distribution of the sequence X1, x2, ..., under

which xv is the first term with distribution P 1 . In other words, D is the

smallest value such that for any v = 1, 2, ...

Ev{(N - v+1) X1,X 2 ,...,xv_1  _D

meaning that this "minimax" type criterion defines the best worst case for

delay.

Thus, the criteria is defined in terms of the quickest detection of a

change subject to the constraint that the size of the test is upper bounded, i.e.,

the desire f, r large mean time between false alarms T, where T is also defined

i-, terms of the stopping time

T = F{NIHo} (1-6)

which denotes the expectation under the no-change hypothesis H0 . The pair

(T,D) will specify the performanc - of a given algorithm.

Notice that in the transient or multiple disorder setting of the

equation (1-3), a fast detection is necessary since if r-v+l<D the transient

cannot be detected.

Thus, for the on-linie framework, this natural criterion should lead to

the optimal stopping rule, and the question that arises: are there test statistics
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which are optimal in that sense? A positive answer will be presented in the

sequel.

Different types of criteria can be used for deriving optimal stopping

times for change detection, see Bojdecki and Hosza (Bojdecki and Hosza, 1984)

and Pelkowitz (Pelkowitz, 1987).

For the off-line problem, this question is more difficult, because as

was shown in equation (1.2), change detection problems are multiple

hypotheses problems for which there exists no optimum test in the classical

sense of power, (Neyman-Pearson lemma), hence, no UMP tests exist. In

such situations, an asymptotic analysis for which UMP tests can be recovered

is of interest. Deshayes and Picard (Deshayes and Picard, 1986) showed that

UMP tests exist for likelihood-oriented methods in the sense of large

deviation asymptotic analysis. (Sample size goes to infinity.)

c. Optimal Stopping Rules

The off-line point of view was addressed in the last section where

it was shown that optimality exists only in the sense of asymptotic analysis.

For the on-line point of view, in the non-Bayesian framework, the onlv

optimality results are given by Shiryayev and Lorden. Lorden (Lorden, 1971)

showed that for some constant y, the stopping rule N must satisfy:

E0{N} = E{NIv= oo l2 y.

The speed in which a stopping rule detects a (true) change of distribution is

evaluated by (1-5)

supesssupEv{(N - v+1)+lxl,x2,...,xv..I}.
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Lorden showed that a certain class of stopping rules is asymptotically (0)

optimal, and that the cumsum procedure (Page's test which can be described

as repeated sequential tests) belongs to this class.

In the Bayesian framework, Shiryayev (Shiryayev, 1968, 1978)

solved the problem. He considered a cost function whereby one loses one

unit if N< v, and loses c units for each observation taken after v if N > v. The

prior on v is assumed to be geometric. Shiryayev showed that the stopping

rule prescribes stopping as soon as the posterior probability of the change

having occurred exceeds a fixed level.

d. Use of Prior Knowledge

For change detection problems, prior knowledge can be useful in

two cases:

The first case is related to the problem of estimating the change

time after detection. From the Bayesian point of view, the knowledge of the

statistical nature of change time makes up the prior needed for such a test.

Such knowledge on the distribution of ti-e change time (or initial conditions)

will assist in the quickest delay detection, i.e., estimation of the time change.

In the non-Bayesian approach this is equivalent to assuming a uniform prior

distribution over the observation set, resulting in a detector which computes

the likelihood function for all possible disorder times.

The second case is the estimation following detection of the

statistical model after the change of the parameter set 01. For test procedures

implemented on line, the use of prior knowledge on the parameters set 00, 1

E improves the quickest detection since in such situations, only a short
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sample is available from the true change time to the detection time, thus, it is

difficult to identify 61.

In this context, we shall consider two different forms of the prior

on the distribution after the change. The first form of prior uses the

composite hypothesis testing framework. As an example, the Darmois-

Koopman family of distributions (Govindarajulu, 1975, Siegmund, 1985)

which is presented in the sequel, allows suitable parametric tests, using the

assumption that the statistics after the change have a form of a one parameter

exponential distribution. The second form of prior uses the popular method

of multiple models whenever the set of parameters 01 is finite. Such

methods can be found in the literature (Anderson and Moore, 1979).

The problem of detecting the change time and estimating the

statistical model after the change is a difficult task because of the reasons

given. Except for cases where the solution to the detection-estimation can be

made explicit, like estimation of the jump amplitude in the case of additive

changes in Gaussian linear models (Willsky and Jones, 1976), the combined

detection-estimation solution cannot be shown in a closed form. This point

is further discussed in Chapter III when the generalized likelihood ratio

algorithm (GLR) is applied to linear models.

This dissertatior focuses on the methods of the quickest detection

problem which provides in the case of detection of jumps in the mean, a

convenient way to estimate the unknown jump. However, it will be shown

that a lot of complicated problems like changes in spectral properties or

eigenstructure (changes in State Space models, AR models or ARMA models)

can be transformed to changes in the mean of a statistic function gn, enabling

12



the use of quite easy detection schemes to detect rapid changes in the

dynamics of the signal model. As shown in the sequel, such detection

algorithms are based on the cumsum procedure which provides a tradeoff of

computation efficiency and complexity.

3. Performance Evaluation

In the off-line processing, the process is observed only over a finite

interval, hence only a finite number of samples is used. The problem is then

considered as that of classical hypothesis testing (1-1). In this case the

performance is measu:ed in terms of probability of detection versus the

probability of false alarm.

In the on-line processing, the approach of "quickest detection" is

adapted as the performance criterion used in sequential analysis. This

approach is used by Nikiforov (Nikiforov, 1979, 1980). For this setting, the

terms run length and average run length (ARL) will be used in order to

determine the number of observations needed to reach a detection decision.

This function will be shown to be the main tool in the performance

evaluation of the test procedures. The first time the test statistic, i.e. the

stopping rule (statistic used to determine the change) crosses the pre-

determined threshold according to desired performance, is called the stopping

time or sometimes also the Markov time (Shiryayev, 1978).

C. MODEL BASED METHODS

In designing the change detection/estimation algorithms, the philosophy

developed in Chow and Willsky (Chow and Willsky, 1986) distinguishes two

tasks which are depicted in Figure 1.2.
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The first task is the generation of change indication signals (residuals)

sometimes also called error signals. These signals are designed to reflect the

possible changes in the measurements or models and to make a subsequent

detection possible. These signals are designed to have a certain mean (usually

zero) and a white noise correlation signature when no change occurs. This is

referred to as the "white noise" hypothesis. In general the mean value or

spectral properties change under a disorder.

The second task is design of the stopping rules (or decision rules) based

upon these residuals.

Sometimes an additional task diagnostics is added. This is the problem of

estimating the origin of the change (for example: which pole location

changed). A broad class of change detection methods makes explicit use of a

mathematical model of the observed system or signal. For Pxample, the

setting of the system or signal in a state-space form enables the use of Kalman

filtering methods to generate the residuals (innovations in this case). This

twofold problem will be presented next.

meaureens Mdel Reiduls taIstc Signature Stopping inference

Tetn Change e

Generation of Residuals C
Transformation g() Detection

Figure 1.2. Model Based Change Detection Scheme as a Twofold Problem
(from Gertler, 1988)
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1. Generating the Change Indication Signals (Residuals)

As shown in Figure 1.2, modeling is an integral part of the change

detection process, usually for creating "white" residuals under the "no

change" hypothesis. Using the state-space setting, residuals may be generated

in a number of different ways, which will be presented briefly.

a. Straight Input-Output Residuals (Gertler, 1988)

Given the state-space model

x(n+l) = Ax(n) + Bu(n)

y(n) = Cx(n)

an equivalent input-output model can be presented by using the shift

operator with matrices G(z) and H(z), z being the shift operator and H being a

diagonal matrix:

H(z) y(n) = G(z). u (n)

where

G(z) = C.[adj(Iz-A)BI

H(z) = det (1z-A)I.

Defining

q(n)T = [u(n),y(n) T

F(z) = [G(z),-H(z)]

then the input-output equation can be written as:

F(z). q(n) = 0.
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Consider now the model matrix F(z) which represents the discrepancies

between the input-output models G(z) and I1(z), and the true system G(z) and

H(z):

F(z) = (G(z), -Az)

where

G(z) = G(z) + AG(z,t); H(z) = H(z) + AH(z,t).

Such discrepancies may account for plant faults or changes. Applying this

equation to the measurements 4(n) with the model matrix F(z) yields the

residuals vector e(n):

F(z). 4n) = e(n).

b. Filtering and Parameter Identification Methods

A popular solution (Willsky, 1976) consists of monitoring the

innovations or the prediction errors, using estimation filters or parameter

identification methods. Using the optimal state estimator, the Kalman filter

is designed according to the "normal mode" or no change situation. If prior

knowledge is known about the change or if a diagnosis is required in addition

to detection, a possible solution consists of using a bank of Kalman filters

designed according to all the possible models for each hypothesis (see Figure

1.3). Notice, that the Kalman filter produces under the null hypothesis zero

mean and independent residuals. Consequently deviations from this

behavior are indicators of change. However, in some practical problems, it

may be necessary to monitor a function of the innovations rather than the

innovations themselves (Basseville, 1988).
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measurements x filter based on Y e" null" hypothesis

(a)

Filter #1 ei

measurements x Filter #2 e 2

+

I Filter #N eN

(b)

Figure 1.3. Filtering Methods for Generating the Residuals.
(a) "normal mode" filter

(b) generating error signatures due to possible change hypotheses

In identification-based methods, a residual quantity is defined in

relation to the plant parameters. The plant is identified in a fault-free

reference situation, then repeatedly on line. The results of the latter, are

compared to the reference values and a parameter error (residual) is formed.

Remark: these model-based methods do not include explicit model switching.
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In Chapter VI such methods will be described, thus enabling us to modify the

Kalman filter to detect the change.

c. Redundancy Methods

These techniques are used primarily for failure detection (sensor

failures). Two classes can be distinguished. The first class is direct or physical

redundancy. Using several identical sensors measuring the same quantities,

the differences between each possible pair may reflect a change. These

residuals are processed using voting methods (Willsky, 1976). Another

approach consists of searching subsets of measurements for inconsistency,

thus indicating changes.

The second class is indirect or analytical redundancy. This

method monitors of all the existing relationships between the inputs and the

outputs that are zero under the hypothesis of no change exists. These

techniques were studied by Deckert (Deckert et al. 1977), Chow and Willsky

(Chow and Willsky 1980, 1984), and others.

2. Statistical Testing (stopping rules)

The resulting residual vector contains the combined effects of the

changes and the noise (as well as the modeling errors). Two approaches can

be considered.

The first consists of the deterministic modeling of the changes. (It is

important not to confuse the random nature of the change time and (usually)

the change magnitude with the deterministic modeling of the change). For

example, consider the case:

Xn = On + nn nn - N(0,a 2 )
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where

O0 1_n<v-1

nn 2!

v being the change time (random). Therefore, the effect of changes on the

residuals has to be separated from that of the noise. This is done by statistical

testing, making use of the assumption of the the non-changing statistical

structure of the noise, versus the changing statistical nature of the

observations (change in mean, variance, etc.).

In the second approach the observed changes in the time series are

modeled in a statistical manner. Therefore, the noise is part of the modeling.

Hence, the statistical nature of the changes can be modeled as changes in the

noise characteristics.

Several testing methods will be described briefly, while the main part

of the dissertation will focus on a subset of them.

a. Compound Scalar Testing (x 2-type off-line test)

Consider a single scalar test statistic

e (n).s n 'z.
H0

where e(n) is the residual vector and Se is the covariance matrix of the vector

e. Then, under the no change hypothesis, the residual vector e(n) consists of

normal i.i.d. components. Hence, the threshold A follows a chi-square

distribution with p degrees of freedom (p being the vector size or number of

residuals). Recursive chi-square tests are also available.
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b. Likeiihood-oriented Methods

The likelihood ratio approach is a general tool for change

detection. Different methods can be considered (Ghosh, 1970; Willsky, 1980).

For example, consider a test which compares the hypothesis H1 of nonzero

residual mean to the null hypothesis H0 of zero mean. The decision is based

on the likelihood ratio between the joint distributions of the residuals

= P{e(1),e(2),...,e(n)JH1} (1-7)
log P{e(1),e(2),...,e(n)JHo}

The numerator and the denominator, respectively, are the Probability

densities of the observed time series under the two hypotheses. If the

residuals are independent, then (1-7) is easy to compute. Under the

hypotheses testing given by (1-2):

Sl(e) = logJ P(ei) log P(ei)i o(ei) P. o i)

If the residuals monitored are the innovations of a Kalman filter, then it can

be shown (Anderson and Moore, 1979) that the distribution of these

innovations is given by the conditional distribution of the observations xi

(conditioned by their past values), hence, (1-7) can be written in the general

form

Sn = n log P1(Xi1Xi-""-,x0) (1-8)i=1 tPo(xi1xi-'-'"xo"

This kind of test is called cumulative sum test (or cunsum test) and can be

written as
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n

Yg(xi). (1-9)
i=k

where

(xi) = log Po(XiIXiI,. .. x0)

Notice that in this case the computation of S1 is recursive.

The tests based on (1-8), (1-9) are stopping rules (i.e., tests which

enable us to estimate the change time v), based upon the knowledge of the

parameterized densities before and after the change. In this case the estimated

stopping time can be found by using the maximum likelihood estimate (MI

under H1, namely

v = argmaxS". (1-10)
15 v<n

In general, the statistical properties atter the change (i.e., using the

parameterized format of P1 as i1) are not known. Hence, the cumsum test

(1-9) can be used to reach the change decision

H1

max maxS (O0 , 1) X. (1-11)

lv<n 61 Ho

This test is called the generalized likelihood ratio (GLR) test (Willsky and

Jones, 1976) and involves a double maximization of high computation cost.

Only in special cases like additive changes in linear systems modeled in the

state-space representation, it can be shown (Willsky and Jones, 1976) that the

effect of the resulting changes in the innovation vector e, are also additive.

Therefore, in the case of Gaussian state and observation noises, there are cases

for which explicit solutions for 01 exist. For example, if 01 represents the
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mean after the change. Then, the maximization over 81 is explicit (Basseville,

1988), resulting in joint estimation of the vector (v, e) by recursive

computation of Sn and Vn.

The theoretical optimality of the GLR has been investigated

recently (Deshayes and Picard, 1986) from the off-line point of view. They

show that under asymptotic exponential decay rate, of the error probabilities

a,p (where a is the Type 1 error probability or the false alarm probability and

similarly P is the Type 2 probability or the probability of detection) and for

specific families of distributions, the GLR tests are UMP.

Remarks

The stopping rule based uponL a cumsum statistic can use any general

nonlinearity g. For example, instead of the probability ratio of

conditioned observations as in (1-9), a probability ratio of the

observations xi can be used. In this case

g(xi) = log P (x1-- -- )
Po(xi)

Both off-line and on-line implementations (using "sliding" windows)

can be used. Examples for using tIiis .;aethod for ARMA and AR

models can be found in the literature (Segen and Sanderson, 1980,

Basseville, 1986, ind Basseville and Benveniste, 1983).

c. The Statistical Local Apr oach

This approach is used in order to overcome the main drawback of

the GLR test, namely its computation cost due to the double maximization.

This approach was introduced by Nikiforov (Nikiforov, 1986) for on-line
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deteLtion of changes in spectral characteristics of ARMA models. The original

idea ccnsists of looking for small changes in models and using a special type

of Taylor's expansion of the log-likelihood function. Thus, the nonlinearity

S( ) becomes

dO 10~ (1-12)

Deshayes and Picard (Deshayes and Picard, 1986), showed that for the statistic

g(xn there exists a central i,-it theorem. Any change in 9 is reflected as a

change An g(xn), for which stopping rules based on cumsum tests can be

designed.

d. Bayesian Oriented Methods

Bayesian oriented methods are based upon some prio statistical

knowlcdge on the change time, or uses some knowledge on th , ,witching

model used to describe the statistical behavior of Ci.c changes. The use of

hidden Markcv models to describe the chdnges in state-space models

(Shumway, 1990) is very popular, and leads to some change detecton

algorithms. However, in the Bayesian framework, it is very diffiult to find a

general solution because of the use of different cost functions or different

prior assumptions. As mentioned in Section B.2 of this chapter, Shiryayev

(Shiryayev, 1977) introduced a Bayesian competitor as an alternative to the

Page cumsum test. Recently, Pollak (Pollak, 1985), proved an optimality

property for the Shiryayev-Roberts rule.
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e. Heuristics Associated with a Two-model Approach (Basseville,

1986)

This method called the "two models approach" is in fact a

simplification of the GLR test. Implementation of GLR tests leads to

"boundary" problems, because models are not very reliable when identified

on short segments. In order to overcome this problem, the two model

approach was introduced. These algorithms are less efficient than likelihood

ratio methods but more efficient than the tests based upon the local approach.

D. ORGANIZATION OF THE DISSERTATION

This dissertation focuses on the on-line analysis of detection algorithms,

hence, the quickest detection methods are explored. Both the non-Bayesian

and Bayesian points of view are investigated but the focus is on non-Bayesian

(maximum likelihood) methods. In this context, sequential analysis and a

certain type of cumulative sum procedures which form a generalization of a

test first studied by Page (Page, 1954) to detect a change in the distribution of

random variables observed at random times are investigated. The Bayesian

point of view is also included. Shiryayev (Shiryayev, 1978) results are shown

to play a key role in any Bayesian approximation.

Different disorder types (Type, 2, 3, and 4) are investigated throughout the

dissertation in the sequential (on-line) detection framework.

The body of this dissertation is divided into four groups as shown in

Figure 1.4. Chapters II and III form the maximum likelihood solution of the

detection problem while Chapter V presents the Bayesian approach.

Chapter iV provides additional tools to analyze the performance of both the
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non-Bayesian and Bayesian methods by using diffusion type approximations.

Finally, Chapter VI presents a MAP estimator to a Type 4 problem, namely,

discontinuity type disorder.

Type I, 11, and TII Disorder Problems * Type IV

Maximum Likelihood Diffusion
Methods Approximations Bayesian Methods

SI m l I

CH II CH II CH IV CH V CH VI
Page Examples: Brownian Extension Disruption

Procedure, Motion of in Initial
Parametric Approximations Shiryayev's Conditions

Performance and Procedure
Evaluation Non-parametric

Detection

CH VII
Conclusions

Figure 1.4. Sequential Methods for Quickest Disorder Detection

Each chapter includes an introduction and a summary section which will

assist in relating all the topics presented throughout this dissertation. An

appendix which summarizes the basic concepts of hypothesis testing and

detection theory is also provided.
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II. SEQUENTIAL METHODS FOR QUICKEST DETECTION OF CHANGES IN

PROBABILITY: ThE NON-BAYESIAN FRAMEWORK

A. INTRODUCTION

Consider the observation process Ix,) with probability density P0(xn) or

conditional probability density Po(xn I Xn-1, ..., x0) depending upon an

unknown parameter 0. This parameter can describe two different situations:

In the first situation, 0 can be for example, the mean or variance of the

density of the time series, and will reflect directly the statistical properties of

the time series. In the second situation, using some convenient

parameterization of a system or signal denoted by 0, i.e. the state-space

representation or ARMA modeling, 0 describes the dynamics of a system or

signal.

In the context of detecting jumps (sudden changes) in the parameter set e,

we are interested in detecting changes in the dynamics, or in the statistical

properties of complicated structures.

Since the jump time is unknown, the problem is twofold: detection of

the change, and estimation of the change time. In this chapter we will focus

on the detection problem only. As shown in the last chapter there are

different issues that must be addressed: on-line versus off-line

implementation, parametric versus non-parametric methods, etcetera. These

issues were briefly presented in Chapter I, and are investigated in more detail

in the context of change detection in this chapter. In particular we will be

addressing the following points:
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1. Off-line versus On-line Viewpoints

Even though the final goal is to implement on-line (sequential)

procedures, the off-line viewpoint is significant, since it can be used to derive

on-line tests. This point will be clarified in this chapter. These two

viewpoints differ in: (a) problem formulation and (b) performance evaluation

as related to different criteria.

In the off-line formulation, the change detection problem is

implemented as multiple hypotheses testing, for which the Neyman-Pearson

lemma is not valid so that no UMP tests exists. Thus, the criterion from this

viewpoint is that of classical detection problems, namely: size and power of

the test.

In the on-line formulation, the criteria is modified to detect a change

in the parameter 0 as quickly as possible. In the on-line point of view the

detection is performed by a stopping rule of the general form

N = inf (n: Sn > A.

S, being an appropriate test statistic (see Chapter I).

The performance of a stopping rule is evaluated by T the mean time

between false alarms (1- 6), and by D the delay for detection (1- 5) as proposed

by Lorden (Lorden, 1971). This is a "minimax" type of average delay referred

to as the best least favorable change time.

The difference between the off-line and the on-line viewpoints is

significant: whereas no optimal test does exist in the off-line framework,

optimal stopping rules do exist in the on-line framework for independent

identically distributed (i.i.d.) sequences with known distributions before and
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after the change. Moustakides (Moustakides, 1986) extended this result to the

non i.i.d. case. Since in this chapter we take the non-Bayesian approach,

another difference is viewed: In the off-line processing we assume a uniform

prior distribution over all the observation set, resulting in a likelihood

detector which computes the likelihood for all possible disorder times,

whereas in the on-line approach, the disorder time is assumed to be an

unknown parameter. Lorden showed (Lorden, 1971) that a certain class of

stopping rules called cumulative sum tests (cumsum) are optimal in the

sense of his criteria. The cumsum tests form a rich enough family of tests,

and are the focus of investigation of this chapter. In particular, the test called

the Page-Hinkley stopping rule is investigated in depth.

2. Composite Testing

As mentioned earlier, optimal stopping rules do exist in the case of

i.i.d. sequences with known distributions before and after the change. When

the distribution after the change is not known, a composite framework needs

to be used. This issue is addressed by using the Darmois-Koopman

Distribution for a one parameter exponential family.

3. Parametric versus Non-parametric Methods

The nonlinearities or transformations g(.) used for the cumsum

detection procedures (1-9) can have a parametric or non-parametric form

(sign, rank tests, etc.). The analyses will provide a general framework which

can be used for either type.
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B. ORGANIZATION OF THIS CHAPTER

The main goal of this chapter is the analysis of sequential methods for

change detection, namely, the cumsum procedures and in particular the Page-

Hinkley stopping rule. The purpose is to set a general framework in which

the transformation (nonlinearity) used can be of a general form (different

parametric and non-parametric forms). Thus, the following two sections (C

and D) can be considered as a "guided tour" through theorems and results

needed to understand and analyze cumsum procedures and their

performance (presented in Sections E and F).

In Section C, sequential tests known as one-sided and two-sided Wald

tests are presented in the classical detection formulation. Some basic

theorems (Wald identity) which are shown to be important for the general

disorder or change detection are presented.

In Section D, the sequential tests implemented with the log-likelihood

function known as the Sequential Probability Ratio Tests (SPRT) are

presented. Optimal properties of these tests are shown. Performance

evaluation of the one and two sided SPRT, known as Wald approximation

are analyzed. Within this framework, composite SPRTs using the Koopman-

Darmois family of distributions are presented. Basic performance measures

in the presence of strong and weak changes are shown.

In Section E, we introduce the cumsum stopping rules in the on-line

frainework (using Lorden's criterion). The Page test is presented and shown

to be as a repeated one-sided Wald's test. Both the off- and on-line

viewpoints are presented. Observing the renewal property of cumsum tests,
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using Ladder variables and results from queueing theory, new aspects of

cumsum tests are addressed. The Page test is also shown to be a maximum

likelihood detector. Finally, optimal properties of the Page tests are presented;

this test is shown to be optimal in the sense of Lorden criteria.

Section F presents the performance evaluation of Page's test. The run

length function is shown to be the primary tool needed for the analysis of

delay and average false alarm rate of the test. Using the results in Sections C

and D we derive two results known as Lorden's and Wald's approximations.

Finally, the asymptotic performance framework is introduced and used for

two important results: first, the asymptotic approximation of the run length

function, and second, the generalization of Lorden's results to general

nonlinearities, other than the log-likelihood transformation used in the Page

stopping rule. A general framework of asymptotic performance evaluation of

Page's test is provided. The resulting measure is shown to be used for any

nonlinearity in the presence of various noise distributions.

Section G presents a short summary of the main results of this chapter.

C SEQUENTIAL TESTS

An alternative approach to the fixed size tests is to fix the desired

performance and allow the number of measurements to vary in order to

achieve this performance.

To formulate the problem, suppose that the observations {Xk: k = 1, 2, ...

are i.i.d. and distributed according to

H0 : Xk-PO, k=1,2,...

versus (2-1)
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H1 : Xk - P1, k=1, 2,...

where P0 and P1 are two possible distributions. A sequential test is defined by

the pair of indicator sequences (0,d) where:

0 = [0k: k = 0, 1, 2, ... } is the stopping rule indicator, (0: 9, n _ {0,1),

d = (dk: k = 0, 1, 2, ... ) is called the terminal decision rule.

For an observation sequence {Xk: k = 0, 1, 2, ...) the rule (0,d) makes a decision

d(xi, x2, ... , xn) whether or not any change occurred. In particular, sequential

tests can be described as follows: Continue sampling as long as

O(xl, x2, ... , x.) = 0, and stop when O(X1, X2, ... , XN) = 1. We define two kinds of

tests: two-sided and one-sided.

The two-sided sequential test is based on the definition of the cumulative

sum:

n
Sn= 9J(xi)

i=1 (2-2)

So = S

where g: 91 -* 9R is a memoryless function of the observations, and s is called

the initial score.

We detect a change according to the following stopping rule:

0 if Sn e (a,b) continue (2-3)On(xl,..xn)=(23
11 ifS n v(a,b) stop

where a, b are the stopping thresholds; b < 0 < a.

Also, the terminal decision indicator is given by:
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X- if Sn b no disorderd " if Sn > a disorder.

The stopping time N (sometimes called the sample size or the run length

of the test) is defined as:

N = inf{n: Sn e (a,b)1

and the exit times are defined by:

Na = inf{n: Sn > a} (2-4)

Nb = inf{n: Sn < b}

The error probabilities for the two-sided tests are defined as:

a = Pr{SN >aH = Ho}

=Pr{SN bIH =H 1 .

In classical detection theory, a is defined as the probability of false alarm, and

P is the probability of miss. In terms of hypothesis testing the acceptance zone

wa is defined as the zone where Xk E wa or Xk - Po. The rejection zone Wr is

defined by xk E wr or Xk - P1 (disorder zone). The indifference zone wi is

defined by Xk E 9- Wa - w, (See Figure 2.1).

The one-sided test is defined by letting: b --

OX1 xO{ ifSn<a continue
rVl(XIX2"xn)= 1 if Sn > a stop

and (2-5)
dn (Xl,X2,... -Xn) = 0 if Sn < a

(i .if Sn -{ a disorder
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and the stopping time is given by

N = inf{n:Sn >- a}
=00 Sn <a.

The error probabilities are defined in this case as:

a = Pr{SN -alHo}

/= Pr{SN 5 a1HI}.

Sn

Na

b
H0 :wa

Figure 2.1. Two-sided Sequential Test

1. The Fundamental Identity (Wald's Identity) of the Sequential

Analysis

This identity forms the basis of subsequent analysis for the Operating

Characteristics (OC) and ARL functions of a Sequential Test (ST). It gives a

convenient way to derive the moment of the sample size required to

terminate the ST.
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Theorem (Wald, 1947):

Let x1 , X2, ..., be independent random variables and let

In=s,= k=Ig(xk). Let ST(a, b, S,) be any sequential test of H0 : 0 = 00 against Hj:

6= 01 based on i.i.d. fg(xn)), and let N be the stopping time for this test.

Let V (h) denote the moment generating function of the random

variable g(x) under the hypothesis Hi:

Vi(h) = E{exp(g(x).h)IHi} i = 0,1

for every real h for which V/(h) is bounded. Then, if P(g(x) = 0 I H) < 1 and

P(Ig(x)l< I H1) = 1, we have:

E{exp(SN .h)[ Vi(h)]-NIHi}=l i = 0,1 (2-6)

The proof can be found in Ghosh (Ghosh, 1970, p. 208) or Feller

(Feller, 1971, p. 603).

2. Applications of Wald's Identity

As a direct corollary to Wald's identity, immediate results for the

ARL function can be obtained:

define z =g(x),

then, the average run length (ARL) is given by Govindarajulu

(Govindarajulu, 1975):E{NI6,} = if o~
Ej N~ jj ESN IO n if E z j = i (0) * 0 (2 -7

E{N1j6} =E if E{zOi} = i(0) =0 0
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Bounds on the stopping thresholds can be associated with the STta, b, g)

a < log 1-P
a

(2-8)
/3b :log 1P-- *

The strict equalities hold if and only if b < 0 < a, and in terms of the error

probabilities for I a, b I > 0:

a < (1- P)e- a

(2-9)

/3 _ (1-a)eb

These approximation are known as Wald approximations and were derived

by ignoring the "excess over the boundaries" (Siegmund, 1985). Notice that

we can get yet cruder inequalities when we consider the asymptotic case

where a 10, 0J. Then:

(xa l< e .

3. Comparison of Sequential Tests (ST) and Fixed Sample Size Tests

(FSST)

Our object is to investigate the number of samples saved by an

ST(a,b,g) over the corresponding optimum FSST, both designed to achieve

the same performance (a,f).

The relative efficiency of ST(a,b,g) at e is defined (Ghosh, 1970) by

RE(O)= n(a,fl)

E{NIO}
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where n(a,3) is the sample size required by FSST test and EINI} is the ARL

function of the ST test, both designed to achieve the same performance (t,fl).

It can be shown (Poor, 1988) that for the case of a simple sequential detection

of a constant signal in the presence of white Gaussian noise, using a

likelihood ratio detector for both the ST and the FST, the limiting RE is

given by

lir RE=4.a=fl--+0

Thus fo, vanishingly small error probabilities (with a = P) the SPRT requires

on the average only one-fourth a, many samples as does the FSST test.

Further discussion can found in Ghosh (Ghosh, 1970).

D. SPRT TESTS

When the test procedure given by (2-2 and 2-3) uses the the log-likelihood

ratio as the nonlinearity rtx)

g(x) = log-dP(x1t60)

the sequential test is called the sequential probability ratio test kSPRT). The

relation between any ST(a,b,g) to SPRT (A,B) is given by

A=e a B=eb

where

b,<a and 0<B1<IA.

The bound approximations (2-8), (2-9) can be converted to SPRT test terms by

placing ea = A and eb = B.
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The SFRT test has a fundamental property which is extremely important

and will be used in the scquel (Therrien, 1989):

under disorder: Efg(xi) } 0
(2-i 0)

under no disorder: E(g(xi) i o} (- 10.

In the following sections, several properties of SPRT test wil! be

presented, and the two- and one-sided 3PRT tests will be analyzed, followed

by #he composite hypothesis framework for SPRT.

1. Optimal Properties of SPRT

For testing a simple hypothesis against a simple alternative with i.i.d.

observations, the SPRT test is optimal among all sequential and fixed sample

size tests in the sense of minimizing the expected ruit ilegmr bowh under H0

and under H, among all the tests having no large error probabilities. The

fol'owing thporem establishes this result.

The Wald-Wolfowitz Theorem (1948):

Among all tests (FSST and ST) ior which Priaccept H 1 I Ho) -< a, and

Priaccept H01 I H} </ and for which E{N I Oi < c i = 0,1; the SPRT with error

probabilities a and 0 minimizes both E(N I }o) and E(N 1 0 1}.

The proof can be found in (Ghosh, 1970). The optimal property of the

SPRT test can be viewed as analogous to the Neyman-Pearson lemma.

Definition (Wijsman, 1960):

A SPRT is said to have a monotonicity property if when the upper

stopping bound of the SPRT is increased and the lower bound is decreased.

then at least one of the error probabilities decreases.
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Theorem (Lehmann, 1959)

Let x1 , x 2, ... be independent random variables having probability

density P(x;6) which has monotone likelihood ratio. Then any SPRT for

testing H0 : 0 = 00 against HI: 0 = 01 (00 < 01) has a nondecreasing power

function.

The proof can be found in Lehmann (Lehmann, 1986).

2. The Termination Property of SPRT

The SPRT test is a closed test if and only if, the termination property

holds for every 0 E . When g(xi) are i.i.d. any SPRT is closed under the

following mild restriction (Poor, 1988):

suppose that for any e e e, g(xi) are i.i.d. random variables and

P(g(xi) 10) < 1, then:

* lim Pr{n > N6} = O.
n--+-

* there exists a t0 >0 such that the moment generating function Efe"I 1)

exists for all real t< to.

This means that the entire statistics of n can be found. The result is

that the SPRT or the ST([f/(1-a)],[(1-1/a])) based on Wald's approximations

are always closed. Ghosh (Ghosh, 1970) extended the result to the situation

g(xi) are noL i.i.d.

Another optimal property of the SPRT was shown by Wald which

established a lower bound on the ARL of competitors of the SPRT. This

result will be presented in the sequel (2-24) when presenting the problem of

composite hypothesis testing.
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3. The Operational Characteristics (OC) and AkL Functions of Two-

sided SPRT Tests

The use of Wald's identity (2-6) forms the basis of certain bounds for

the OC function Q(O) and ARL functions for the SPRT.

Wald's Approximations

Wald's approximations are based on the use of the moment

generating function of g(x) (2-6) provided that we can find two nonzero real

!'umbers h0 and h, such that

yi(hi)=E{exp(h.g(x))ji} =1 i=0,1. (2-11)

Existence and uniqueness of such roots are guaranteed when g(x) has a

nonzero mean and satisfies certain other conditions (Feller, 1971).

The key results for our purposes is that wi(h) = 1 has:

* one and only one nonzero root

-- < h(O) < 0 if E{g(x)je} = E0 {g(x)} > 0

(2-12)

0 <h(O) < if E{g(x)6} = E6{g(x)} < 0.

* No non zero real root if E(g(x) 161 = 0.

When we try to detect a change from a negative trend Ejg(x) I 00) < 0 to a

positive trend E(g(x) 101) > 0 then, it implies that h(0l) < 0 < h(0O).

Notice that the roots are functions of two parameters: the probability

density of the observations P(x) and the nonlinearity g(x). The approximate
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formulas of SPRT test ST(a,b) for the OC and ARL are derived when g(xi) are

i.i.d. and b < 0 < a, using the assumption of no excess of S, over a and b.

Lower bounds for the ARL function of two-sided SPRT test under

hypotheses H0 and H 1 in terms of the error probabilities are given by Wald

(Wald, 1947):

L( 0 ) = E{N}2 (I- a)log(3 /1 - a)+ alog(1-P a/) if 8 = 00.
Eo1g(x 1)}

(2-13)

L(01)= EI{N} > f log(P/1-a)+(1-,0)log(I- //a) if 9= 91.
El{g(xj)}

Bounds for the operational characteristic function Q(O) are given by

Ghosh (Ghosh, 1970):

" For detecting a change of positive trend (upward change) h(0o) > 0:

exp{h(9), al - 1 6(0)exp{ h() . al - 1

exp{h(9). a) - 77(9)exp{h(O). b} - Q (()expjh(9). al - exph(9) b}

* For detecting a change of negative trend (downward change) h(90 ) < 0:

exp{ h() -al - 1 <r1O < t(O) expfh(O) -a I - 1ex~()a()epxph(aO) b} < pQ((9.) <

expjh(O) -al - 3(9)expjh(i9). b} i ( 9)exp{h(O). al - exp{h(O). b}

where (2-14)

T() = inf E exp{h(e).g(x)}exp{h(O).g(x)} <1 ;0

8(e)= i E{exp{h(O).g(x)lexp{h(O).g(x)1 l.0} ! 1.
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Recall that for any test, the CC should result in Q(Go) > 1-a, and Q(0i) < 3 (see

Appendix). Thus, the motivation is to find bounds for the ARL in terms of

the OC function and the stopping thresholds a,b. These upper and lower

bounds for the ARL are given by Ghosh (Ghosh, 1970):

[a + 7(0)[1 - Q(e)] + bQ(O)
<j~x~ Ejg(xA8} > 0E{g(x 6}

L(O) = E{N} - a2[1-Q()]+b2Q(e) Ejg(x)jG=0 (2-15)
E{g2(x)je}E

[a + y(0)[1-Q(6)i + bQ(9)>- ~ xO Ejg~x)jO} < 0
t E{g(x)I6}

where y(O) = sE{g(xi) - rg(x) _tr > 0; e} is the "excess over the boundary."

The mean time between false alarms T is given by L(O) while the delay for

detection is given by L(6 1).

Detecting a change from a negative trend E{g(x) I Oo) < 0 to a positive

trend E{g(x) I 011 > 0 (upward change) can result in effective bounds for L().

Notice that Q(Oo) > 1-a and Q(01) < 3, result in consistent inequality directions

in (2-15). Thus, upper bounds can be evaluated in the case of disorder

detection. Similarly, bounds for L(8) in the case of detecting a change from a

positive trend to a negative one (downward change) can be found by

reversing the inequalities in (2-15).
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4. The Operational Characteristic OC and ARL Functions for One-sided

SPRT Tests

For detecting a change from a negative to positive trend, the

probability that the one-sided test does not stop under 0, can be found by

using the limit of the two-sided OC function, as b tends to negative infinity.

Thus, this probability is lower bounded by:

Pr[L(8o)=c01= lim Q(6o)
b--*-00

> lim - expjh(8o) -al- 1
b-*-o exp{h(Oo) . a} - fl( 0 )exp{h(6o)' b}

-expjh(8o) -a)}-1

expjh(6o).-al

Notice that the obtained lower bound avoids the use of the functions 6() and

17(0) which are difficult to generalize.

The probability that the one-sided test terminates under 60 which is

the size (a) of the one-sided test is upper bounded by

a = Pr{SN > a HO} = Pr{L(OO) < -}

= 1- Pr{L(O) = oo} (2-16)

!5 exp{-h(0o).a}.

This result is very important and will be used in the sequel when analyzing

the cumsum procedures due to Lorden's criteria.

An upper bound for the ARL function of the one-sided test under 81

(Delay for detection) is obtained by using the upper bound for the ARL of the

two-sided test (2-15):
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L(0 1 ) = El{N} < lim [1+ 7(e)][1-Q(01)]+bQ(01)
b-*-o E{g(x)1 01}

Since b -- -c, the OC function Q(01) is a decreasing function (monotonicity

property of the SPRT function), E(g(x) 101) > 0 (detecting a positive trend),

hence, the right-hand side is a decreasing function and the inequality is

preserved as Q(9 1) -4 0, resulting in:
EN6} a+y (01 ) Egx[?}>. (-7

L(01) = El{N} =E1, (x 1) Efg(x)Iei} >0. (2-17)

5. SPRT ior Composite Hypotheses

Although the SPRT was derived from a test of a simple hypothesis

against a simple hypothesis, it was shown that from the on-line point of view

of detecting abrupt changes, optimal stopping rules do exist in the case of i.i.d.

observations with known distributions before and after the change. When

the distribution after the change is not known, some other hypotheses can be

considered. Thus, it is natural to consider to test for example H0 : 9 < 0*

against Hl: 8 > 0".

Wald (Wald, 1947) considered the method of weight functions in

order to deal with unknown composite alternatives where the alternative

may be a parameter within a surface (Rejection Region). If the method of

weight function is not feasible, so-called open-ended (one-sided) likelihood

ratio test procedures can be considered. Lorden (Lorden, 1971) investigated

that approach for the problem of open ended (one-sided) tests for the one

parameter exponential Darmois-Koopman families of distributions. This

approach leads to easily computed procedures to obtain approximations to the
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detection probability and ARL functions of the SPRT of composite hypotheses

using only the theory developed for simple hypotheses. The following shows

that this is generally possible in the context of a one parameter exponential

family, and will form the base for Lorden's cumsum procedure.

a. Composite Testing for Darmois-Koopman Distribution Families

(Siegmund, 1985)

Consider a general SPRT test defined by (2-2) and (2-3) with the

additional assumption that xj, x2, are i.i.d., so that

logr
1= Po(xi).

Next we follow Siegmund's analysis (Siegmund, 1985) to derive a new

observation. Let P, P* be third and fourth density functions, such that the

original test of PO against P1 is equivalent to a test of P against P* with new

stopping boundary values, such that

P(W PI(x)1 0  0. (2-18)

P(x) [OWxJ

Note that P*(x) must satisfy

j.Pi Wx0j P(x)dx=1.

Define

z(x) = l P1(x)

hence
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f*ez(x)Ol P(x)dx = 1.

Now we define a function b(O) such that

f ez(x) 6p(x)dx = eb(O) * 1 (2-19)

where 0 represents the statistical "distance" between the null and the

alternative hypotheses. Notice that b(8 1) = b(O) = 0. If the last integral

converges then

f ez(x)-b(G)P(x)dx = 1

and

PO(x) = ez(x)O-b(O)p(x)

and

PO(X) - ez(x) O- b(O) (2-20)

P(x)

represents the new test since p- =Px The resulting test defines a
(x ) L ) l

one-parameter exponential family of distributions under which composite

tests can be eviluated easliiy.

Differentiation of (2-19) w.r.t 0 gives:

b'(O) = J.z(x)- Po(x)dx = Ex{z(x)}

and
22

b"(0) = f[z(x)] Po(x)dx-[b'(0)]2 = varx(z(X)) >0 (2-21)

so b(O) is convex. The desired 0]* 0 satisfying (2-18) exists if and only if
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b'(O) = J z(x)P(x)dx = E.{z(x)1 0

since b(6) is convex and b(O = b(0) = 0 (see Figure 2.2).

The original test of Po against P1

n P(Xk)
N =inf{n: ki P (xk ) e(ab) (2-22)

is equivalent to a test of

n P ( Xk)N = infjn: 11j e~k (0e,01)}

b(O b(O) NO

0, 0 7 1 -b '( 0 > 0

b'(O) < 0 b'(0) = 0

Figure 2.2. The b(6) Function (from Siegmund, 1985)

Since P(x) represents the null hypothesis under (2-18), it is clear that

for composite testing, b'(0) = E{z(xi)} = E{z(x)JHoJ # 0 implies that under the

null hypothesis (no disorder) the test should give a negative trend b'(0) < 0

when detecting a change from a negative to positive trend (see Figure 2.2).

This result is consistent with another one which is presented in the sequel,
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namely, that it is worthwhile to bias the detector if it is known that before the

disorder occurs, the test will have zero mean. This gives some degree of

robustness to the test under composite hypothesis testing.

b. Performance Evaluation

The following proposition establishes an important result about

the performance of the SPRT within the composite framework. This result

will be shown to play a key role in Lorden's work about the optimality of

Page's test in the on-line framework (minimum average delay for detection),

by assigning a lower bound on the ARL for competitors of Page's test.

Proposition (Wald, 1947):

Given a two-sided sequential test of Ho:Xr o against Hl:Xe 0,

suppose N, and N 2 are stopping times for xl, x2, ... c X such that:

Poo(N 1< o):a a and PO(N 2 < o)5 /<1

where a and P are the false alarm and miss probabilities (respectively).

Define:

I(o, 00) = =Olgf~) f.lgP (2- 23)1 Lfoo W - I l~feo(XW

this is the information number or the Kullback-Liebler number. Then:

SI(E,00)EO{min(N1 N2 )} > (1-P)lna - ln2

* and for N 2 -- +-(one - sided test) and /3 ,- 0, (2-24)

In a - 1

L(O) = Ee{N 1} > --19 10)

The proof can be found in Wald's book (Wald, 1947, p. 197)
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Remark: The last proposition gives a lower bound on the average delay for

detection D = E(N I H1) for any stopping ru!e for which a = P0 (N<-) < 1 (see

Figure 2.3). For the SPRT we have the approximate relations (2-13) between

the ARL and the error probabilities. The last proposition generalizes (2-17) for

composite tests, in asserting that the ARL function in (2-13) is approximately

minimal.

a

S0
0

b
H0 :00

Figure 2.3. Sequential Test Exit Times

c. Performance of Sequential Composite Tests in the Presence of a

Weak Signal

In classical detection theory, the locally optimum detector

maximizes the slope of the power curve with respect to signal strength

(evaluated at zero signal strength or at the presence of a weak signal) for a

fixed false alarm (Neyman-Pearson locally optimum procedure). In this

composite alternative hypotheses approach, the alternatives 9 are close in the
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sense of metric or distance to the null hypothesis 00. It can be shown

(Kassam, 1987) (Poor, 1988) (Kazakos, 1977) that the locally optimum detector

in the classical detection problem of Ho: xi - P(x I Oo) versus HI: xi - PI(x) =

P(x I ) for 0 > 00 is given by:

g _o(x) _= PO'(W
P(xeo) Pox)

d -ln{P(xO)}(=0o (2-25)

where 6- 00 indicates the "distance" between H1 and H0, and 0 --> 00 indicates

a weak signal situation, resulting in the locally most powerful (LMP)

nonlinearity geo. For the ST defined by (2-2) we can define the Signal-to-Noise

Ratio (SNR) (Kassam, 1988):

SNR- (E{Sn10})
2

var{Snl 0}

We seek to maximize the SNR when 0 -t 0.

The efficacy E of a test is defined (Kassam, 1988) as the limiting

incremental signal to noise ratio:

(dE{SnjO}IjOc(g)= lim (raI =

,-., nvarSnjlo}

(Ejg'(x 001)2

var{g(x)jOO}
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The nonlinearity g(x) that maximizes the efficacy is the local optimum

nonlinearity gto(x) = -Po'(x) / Po(x) which is also the Neyman-Pearson locally

optimum procedure. In this case the efficacy is equal to Fisher's information

for a location shift test, namely: H0 : xi - f(x) versu- . 6.: xi - f(x-6), and is given

by (Kassam, 196,)j:

e(g)= Vf 0 o(x)dx.

6. Practical Criticism of the SPRT and Truncated Tests

The optimality property of the SPRT is a remarkably strong property

but it applies only to simple hypotheses. Even for the simple case of constant

signal detectors as shown in (Poor, 1988), it is necessary to know the signal

value in order to implement the test. This is in contrast to the Fixed Sample

Size tests which are UMP for 0 >_ 0. For applications involving composite

testing, the open continu:..ion region can lead to very large sample sizes,

especially when Etlog[fi(x)/fo(x)] = 0. Thus, although the ARL of the SPRT is

finite with probability 1, it is not bounded. This difficulty can be overcome by

modifying the SPRT to stop sampling and make a hard (single-tnreshold)

decision after the ARL has reached some maximum number of samples. This

type of test is known as the truncated test and can be described as follows: The

sequential test is defined by

N = inf(n: Sn v (a,b)1.

In the absence of a definite upper bound on N, we define an upper bound M.

Hence, the new (truncated) stopping rule is given by

min(N,M).
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Another problem associated with the SPRT is the estimation

following detection. If we want to stop sampling as soon as it is possible to

tell in which of two subsets of the parameter spac- a parameter lies, then

usually, the estimation procedure will require an adequate number of

samples which is larger than the sample size. A possible solution is to

artificially enforce a larger sample size. However, sequentially stopped

versions o' the estimators are biased, while we would like to consider

unbiased estimators. The problem of estimation following sequential tests is

not a part of this work. However, in the disorder detection framework, we
m

are interested in randomly stopped averages I,=, g(xi) where m is a random

variable. The Anscombe-Doeblin theorem (Siegmund, 1985) shows that such

averages are asymptotically normal under quite general conditions.

E CUMSUM PROCEDURES

Assuming that a given process has i.i.d. observations x1, x 2, ..., whose

distribution possibly changes from Po to P1 at an unknown point in time v,

then, in the hypothesis testing framework the problem can be presented as:

H0. X1,X2,... - P0

versus
(2-26)

Hv: X1,X2,...,Xv-1 - PO V >_ 1

Xv,Xv+ 1 ,... P

Let Pv and Ev denote the probability measure and the expectation under Pv

respectively, when the change from P0 to P1 occurs at the vth cample

(v=i, 2, ...). Let P0 denote the probability that there is no change, i.e., v=

Using Lorden's definition (Lorden, 1971):
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D = E1{Nj = suessE{(-v+)xixX.}

where: (a)' = max(O,a) (2- 27a)

which is the worst possible or the least favorable conditional, expected

detection delay or quickness of reaction to a change (disorder). Thus, a

"minimax" type of criterion is defined for which the delay D is the smallest

value such that for every v >1

Ev{(N - V+1)+IX,X2-...IXVq}!! 1{N}

almost surely under F0 .

The goal is to find the stopping time N which allows the quickest

detection of the change, subject to:

Eo{N) 2! y. (2-27b)

The constraint implies that if the change does not occur, then the expected

time for false alarm is no less than the threshold of y (where 7

asymptotically).

Several ad hoc proposals to solve this multiple hypothesis problem that

at least one of the Hv hold (1 < v < n) against HO. The most well known

procedures are the Page-Hinkley and Shiryayev-Roberts tests, and will be

presented in the sequel. Both are based on the probability ratio, hence,

presuming the properties presented in the last section.

1. The Page Cumsum Test (Page, 1954)

Page's procedure has two equivalent implementations: Recursive

test which can be considered as a repeated modified one-sided SPRT test with
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constant stopping limits, and a Repeated SPRT with a moving indifference

zone.

a. Repeated SPRT with Moving Indifference Zone

Consu.er the test:

g n max( n-k) in k

where Sn = log P (x )  (2-28)
i=1 PO(xi)

9 00

The indifference interval equals to (Oa). The stopping rule based upon (2-28)

is defined as

N*=inf n: S- min Sk > a (2-29)

Note that gn = Sn - min Sk measures the current height of the random walk

Ok!n

Sk, k = 0, 1, 2, ... above its minimum -'alue. Whenever the random walk

establishes a new minimum, the process forgets its past and starts again in the

sense of a renewal process (see Figure 2.4):

Sn min Sk = Sn+j, - minn+k- n) (2-30)
P1) Sk!Sn-s Os k!5j

This renewal property has important consequences. It means that

N* can be defined in terms of a sequence of one-sided SPRTs as follows:
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NI =infln: k i!(O~A)

if SNI a a, then: N*=Ni.

otherwise: SN1  min Sk and define:

N2 =inffn: SNI~n-SN1 0A} (2-31)

if SN +N2 -S9N -aa, then: N*=N, +N 2

otherwise: &I+2=0 rin S
5 N1N2  OkSNl+kN 2

and in general,

Nk =if f n: N1 NA- N,-o.+k- (O'a)}

a- Detection

N, N 2  N 3

Figure 2.4. Page Test (Moving Indifference Zone)
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The overall stopping time is given by:

N* = Ni + N2 + ... + NM (2-32)

and is called the extended stopping time, since it consists of sum of single

SPRT stopping times, where:

M = inf{m: N+...+N SN1+ ... N,, - > a} (2-33)

is the number of the repetitions (renewals). By (2-33), M is geometrically

distributed (see also (Siegmund, 1985)) with:

E{M} = 1/ Pr{SN 1 _> al.

M
Define: N* = _Ni, and using Wald's identity (2 - 7) we obtain

1i=1

E{f* }=E{N1 }. E{M}= p{N11 (2-34)

which expresses the extended stopping time in terms of the expected stopping

size and error probability of a single SPRT.

b. Recursive Implementation

As will be shown, the recursive impleinentation has two

interpretations.

The first is the relation to the repeated one-sided Wald sequential

test with boundaries 0 and a, which forms a rene,val process whenever the

random walk S, hits the lower boundary 0 (see Figure 2.5). The renewal

process is repeated until such time that a Wald test exceeds the threshold a.

Thus, the process Sn can be described as
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Sn = max{O,S.,, + g(xn)}

SO =s (3-35)

while the extended stopping time is given by:

N*= if in:Sgn al

This representation is equivalent to the original Wald test

stopping rule:

N = inf{n:Sn < 0 or S. > a}

which is repeated from the initial score So each time Sn < 0 (zero being the

renewal boundary, hence, the name: repeated one-sided Wald Test), and so

on, until such time that a Wald test exceeds the threshold a.

aI

n
N*

Figure 2.5. Recursive Implementation of Page's Test

The second interpretation of the recursive algorithm is related to

the connection of the one-sided first passage problem with a single server

queue. It will be shown that a queueing process Wn can be described in terms
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of a random walk Sn. This fact forms the basis of the asymptotic distribution

analysis of Wn as n--.

Assume the customers arrive at single server at time al < al + a2

< al + a2 + a3. These arrival times are the arrival epochs which form a

renewal process. Assume, al, a2, ... are i.i.d. and let bn (n = 1, 2, ...) denote the

service time and Wn the waiting time of the nth customer. Suppose that the

(n-l)th customer arrives at epoch t. His service time starts at epoch t+ Wn-1

and terminates at t + Wn-1 +bn-1 (See Figure 2.6). The next customer arrives at

time t+an. He finds the server free if Wn-1 +bn-1 < an, but has a waiting time

(server busy) wn = Wn-1 +bn-1 - an if this quantity is greater or equal to 0.

Denote the queueing process by Xn = bn-1 -an. In short:

wn-l+Xn if wn-l+xn >0

{Z X0 if wn-l+xn < 0

or: Wn = max (0, wn-l+xn)

wo= 0

This result shows that if the service times bl, b2, ... are i.i.d., then the Xn's are

also i.i.d., hence the process w, is a random walk which resets to 0 whenever

it enters (--,0). In order to describe the random walk Wn in terms of the

random walk generated by the random variables Xn, define:

Sn = Xl + x2 + ... + Xn

and adhere to the notation for ladder variables. Define v as the subscript for

which S1- 0, S 2 > 0, ..., Sv-1 > 0, but Sv < 0. By definition, v is the first
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n-1 n

customer customer

an b. n -X n -

t t +W..l

t n- Il
t =service service ends for

starts for customer n-1
customer n-1 starts for

custorner n

(a)

n-1 n

customer customer
Free

time

t t +W 1. 1 + 'l b l

start service start
service ends service

(b)

Figure 2.6. Two Situations of Server
(a) server busy
(b) server free
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descending ladder epoch denoted by l. Up to this epoch, the customers

1, 2, ..., v--1 had positive waiting times wi = S1, W2 = S2, ..., Wv-1 = Sv-1. The v

customer is the first one to find the server free. The first conclusion is (Feller,

1971): The descending ladder epochs correspond to the customers who find

the server free, (i.e. wk = 0) and constitute a renewal process with recurrence

times distributed as F. (Since the continuation of the random walk beyond

epoch Y"1 is a probabilistic replica of the entire random walk).

Suppose now that customer v-1 arrived at epoch r. His waiting

time was wvi = Sv-1, the epoch of his departure is Tr + wv-1 + b.- 1 (see Figure

2.6). The customer v arrived at epoch - + a v, when the server is free. Thus,

the time for which the server is free is given by

free time = T + av -(r + wv-1 + bv-l) = av -wv-1 - bv-1

=-Xv -Wv-1 = -XV - Sv-1 = -S

But by definition Sv is the first descending ladder height 91.

Thus, as the second conclusion we have: The duration of free periods are

i.i.d. random variables which constitute a renewal process with recurrence

time distributed as -H1.

To summarize, customer number k which arrives at epoch

F" + "" + ', is the customer that finds the server free. At the epoch of his

arrival the server has been free for -9ik time units, at the same time the kth

descending ladder height is given by Sk = -E,, H,-.

The remarkable statistical property of the random walk as of

containing two imbedded renewal process: the ladder epochs and ladder

heights, and the fact that the random walk is a probabilistic replica of the
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entire random walk after the first ladder epoch (and each other ladder epoch)

enables important results to be found about the distribution of the ladder

variables in terms of the first ladder variables. It is easy to follow the next

analysis of Page's cumsum tests (2-29) and (2-35) in terms of ladder variables.

c. Page Procedure Revisited

The first Page's version presented by (2-28) and (2-29), implies that

the time k for which min Sk gets its minima, is a descending ladder epoch.
Ok:n

Hence, at that time k the test is renewed. The descending ladder epochs

indicate the time where the change is more likely to happen. A change is

declared when the test is terminated, i.e., the "distance" from the last

descending epoch is at least a. For the repeated one-sided Wald's SPRT

version (2-35), the descending ladder epochs are defined at the times where

the random walk hits the lower boundary 0 (see Figure 2.7). At that ladder

epochs the test is renewed. Once again, the test measures the "distance"

between the current value of the random walk from the last ladder epoch.

This distance is equivalent to the "statistical distance" between P0 and P1 as

defined by (2-26) or the disorder distance. Notice that this analysis was done

for detecting upward changes. Similarly, for detecting downward changes we

will use ascending ladder epochs and the test terminates when the test

reaches a "distance" a below the last ascending ladder variable.

Three important observations can be made: The first, as pointed

out before in the analysis of Page's test in a composite hypothesis testing, is

that it is worthwhile to bias the detector if it is known that before the disorder

occurs, the test will have zero mean. It can be shown from Figure 2.8 that a

random walk with negative drift will improve the chance of rapid disorder
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detection under the restriction of low false alarm rate, since the number of

ladder epochs will be larger, resulting in more renewals, thus having the

effect of "forgetting" the irrelevant past observations. This result is supported

analytically in the sequel when it is shown that the expected delay for

detection is reduced by biasing the test.

Sn

freen

~n

'--v-1 - v

I H;

, I

Figure 2.7. Random Walks wn and S, Containing

two Renewal Processes: J4, !7-
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3o W,

20 - server-free

10 -V

0 A , '(\.w I i I 't, i r I ___ 7 - 1 1 -7 -
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-20 -

-30

-40 /

maximum possibility
-50 of disorder

process of
-60 global minima

(on-line viewpnt)
-70 -

80

Figure 2.8. The Relationship between the Recursive Implementation W, and
the Random Walk Process S, (From Feller, 1971)
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The second observation is related to the first by realizing that each

time the test is renewed (having the effect of resetting the test, hence

"forgetting" the past), the test or detector behaves like an adaptive detector,

since when reaching the descending ladder epoch, the past noisy observations

containing no data about a possible change can be ignored. The fact that at

each ladder point the likelihood of a change is the greatest implies that since

the disorder is a local phenomena, the detection will occur if the signal-to-

noise ratio and/or disorder duration is large enough, resulting in a threshold

passage. Thus, this adaptive detector acts like a low-pass filter which filters

the incoming signal except the changes.

The third observation leads to the analytical equivalency between

the Page tests (2-27,2-29) and (2-35) and is found in Siegmund (Siegmund,

1985).

Let Sn = x1 +...+xn. By backward recursion,

wn= max(O, Wnl + Xn) = max(O, (Wn2 + Xnjl)+ + Xn)

= max(O, Wn_2 + Xr_ + Xn , Xn)

=max(O, (wn_3+xn2) +Xnll+Xnl, Xn) (2-36)

=max(O, Wn_3+Xn2+Xn_.1+Xn, Xn_ 1 +X n , Xn)

=...max(O, Sn , Sn-1 , Sn-S2,..., Sn-Sn_1)

= max(S n -Sk)=S,-maxSk
Ok!n O<_k~n

which shows the equivalent interpretation of the two procedures. Namely,

the queueing variable wn measures the departure of the process Sn from its

last maxima.
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This shows also that the distribution of wn and its asymptotic

behavior can be studied.

Theorem (Feller, 1971): The distribution of the queueing variable Wn is

identical to the distribution of the random variable Mn, where:

Mn= max[OSI,...,Sn]
Okn

where: S,, = Yxi. (2-37)
i=1

Hence,

Pr{wn > a} = Pr{N*(a) < n

where N*(a) =inf{n: Sn > a} (2- 38)

and lim Pr{wn a} =- Pr{ N*(a) <}
a---)co

This relation is used in the sequel to derive an expression for the probability

of the ARL function of the test (see 2-52).

The Wiener-Hopf integral equation (Feller, 1971) can be used to

find an explicit sulution to the probability distribution m(x, = Pr{(M < x} =

Pr (Wn 5 x}.

d. The Page Test as a Sequential Maximum Likelihood Detector

Let the problem be specified as in (2-26) When Page's test is

implemented with the log-likelihood ratio (repeated SPRT Test), it is

equivalent to a sequential implementation of the maximum likelihood

detector. The log-likelihood function l(xl ..., x,) is given by:
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V-1 n(xx,)- = ~logrp0(x)] + Zog[p1 (x)]

i=1 i=v

= iog.~Pi ] + l og[P (Xe)]
i= _ OL i).] i=1

Notice that the last te-rn does not depend on the disorder time v

and can be neglect,_.

i=V Pb(xi)Define: sn = PO(xi)

and replacing the unknown jump time v by its maximum likelihood

estimate under Hv, we get the following ':hange detector:

gn(')= maxSn Sn - mim Sk

v 1lk_n

= Sn - min Sk (2-39)

resulting in the same detection test as in (2-28,2-36).

2. Optimal Properties of the Page Test

In this secticn we will review two important resul , due to Lorden

(Lorden, 1971). The first resul (the following theorem) will enable the use of

Wald approximations (2-16,2-17) tc find an efficient way of calculating the

perform ince measure for Page's test. The second result establishes the

asymptotic optintality of Page's test in the sense of Lorden's criterion.

a. Bounds on the Performanct' of Quickest Detection for Repeated

O. -sid.,d Tests

Let N be the stopping variable ot a one-sided Wald test:
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N = inf(n: Sn > a)

for some statistics {Sn} defined as functions of the i.i.d. observations X1, X2,

Let Nk be the stopping variable of the same test applied to Xk, Xk+l, ..., for k = 1,

2, ..., and define

N* =rinNk+ k -1}
kI

N* is the extended stopping variable of the one-sided test which stops when

one of the sequence of tests {Nk) applied to Xk, Xk+l, ..., stops the first time.

Theorem (Lorden, 1971): Let N be a one-sided stopping variable with respect

to x1, X2, ..., such that

Pr{N < HHo} 5 a.

Let Nk denote the one-sided stopping variable obtained by applying N to xk,

Xk+1, ..., and define

N '= min{Nk +k-1}.
k_]

Then,

Eo{N}>-=1 (2-40)
a

and for any alternative distribution P1,

Ell N* }__ E,{N} E

Notice that the one-sided Wald test is applied to Xk, Xk+1, ..., stopping the first

time one of these tests stops. This result can now be viewed by using the

renewal argument: Each time the test statistic Sk (2-35) falls below zero, S, is
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reset to zero indicating that a new test is starting from k+1 and so on until the

first test reaches the stopping boundary.

This theorem establishes the optimality of Page's test (N*) versus

unrepeated one-sided tests (N). This result will be used in the next section to

derive a performance measure for Page's test.

b. Asymptotic Optimality of Page's Test

Recall Lorden's criterion definition for the performance of

cumsum procedures. The stopping rules N must satisfy

EIN Iv=o} = EO{N} -> y.

The quickness for which the stopping rule detects a true change in

distribution is evaluated by E1 (N) given by (2-27a).

The problem of minimizing E1{N} subject to the constraint

E0 {N} > y becomes more interesting if we replace the distribution P1 by the

Darmois-Koopman family of distributions (Po, G E } with 0 unknown, and try

to achieve small E9{N} (defined as E1{N}) for each 0 subject to EO{N) y. To

handle composite {POI, one-sided sequential tests of P0 vs. {Pe} are applied to

Xk, Xk+1, ..., for k = 1, 2, ..., stopping the first time one of these tests stops.

Lorden showed that we can simultaneously minimize E{N} for

each 0 asymptotically as y- - for a wide class of tests. Lorden's main result

was that Page's test (N*) implemented with the log-likeiihood function and a

zero score with a stopping boundary y belongs to this class. The following

result will show that Page test achieves the lowest possible E,{ N* }, resulting

as an optimal test both when PI is known, and when P1 is unknown

(composite testing case).
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Let N and N* be defined as in the last section. If N is the stopping

variable of a one-sided SPRT of P0 vs. P1 with likelihood-ratio boundary 1/ a,

then by using Wald's approximation (2-7) we have that

El{N}-Ilog al/(61,,0) as a -- 0

where I(01, 00) is the information number as defined by (2-23). Applying the

last theorem, we obtain that N* (Page's procedure) satisfying Eo(N*) > a-1 and

E1{N) is asymptotically at most Ilogal/ 1(81, 0) as a -4 0, and this is

asymptotically the best we can do. In other words:

inf,{N} j EN*}I- log7 r as a-] 0. (2-41)

Lorden also showed that we can simultaneously minimize Ef{N} for each 6

asymptotically as y-4 - for a wide class of tests:

logy as y -4.I(o,60)

Moustakides (Moustakides, 1986), extended these results to the non-

asymptotic case where yis finite.

F. PERFORMANCE ANALYSIS OF THE PAGE TEST

In 1954, Page (Page, 1954) introduced a control chart procedure based on

the repeated one-sided Wald-SPRT test with boundaries (a), zero being the

renewal boundary and a the stopping boundary.

Let the problem formulation be according to (2-26), that is,

N* = inf{n: S> a}

and let L(s,O) be the ARL of this test with initial score S0 = s when {xi) are i.i.d.

F(x 1 6) distributed, i.e.,
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L(s, 0) = EfN* P0o = S, 61.

Consider now Wald's test

N = inf(n: S, < 0 or S. > a).

Similarly, let L(s,0) der.-te the ARL of Wald's test,

Lw(s,O) = E{N I So = s,6)

and let Qw(s,O) be the Operating Characteristic (OC) of the same Wald test, that

is

Qw(s,O) = P(Sn < 0iS0 = s,e).

Then, the ARL of Page test L(s,) is given (Page, 1954)

L(s,6) = Q. (s, e) L.(0,19)+L.(sIe). (2-42)

1-Q,(o,0)

Lorden (Lorden, 1971) and Benveniste (Benveniste, Ed., 1986) showed that

the least favorad'.± delay for detection, D, as defined by Lorden for Page's test

occurs when the test statistic is zero when the change or the disorder occurs,

i.e., 3t- = 0, since the test statistic has the longest path to travel towards the

stopping boundary. Thus, the ARL function with initial score So = 0,

determines both the false alarm rate T and the delay for detection D as given

T=L(0,80)=E0(N*)= L.(0'00) (2-43)
1-Q.(0,00)~(2-43)

D- L(0,01) = E1(N ) = -Q(,O) (2-44)
1 - Q. (0, 611)

Possible ideal and real ARL functions are presented in Figure 2.9.
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L(O)

T (ideal' _ _

real

D
1 (ideal

(a) Real and Ideal ARL Functions for Testing 0: 6o against 6 > 0o

L(O)

T (ideaC q-

real

D 1 _ _ _ _ _ _ _

(ideal;

0 0

(b) Real and Ideal ARL Functions for Testing 0 = O0 against 0 #90

Figure 2.9. Possible Ideal and Real ARL Functions

Remark: The local properties of cumsum tests can be measured in terms of

the derivative of the function L(O) at 0, since the local properties of a test

measures the test's performance as el--460 (when the statistical "distance"
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between the two hypotheses tends to zero), meaning weak signals or a low

signal to noise ratio case.

It was shown (Nikiforov, 1986) that convenient measures can be defined

by using the derivative of the ARL function for determining a local

approximation (see Figure 2.8), where is defined as

aL(O) if ,0

9 = 8o

and if = 0, the local approximation is given by (2-45)

2 L(O) if= 0.
Do 2

9 = 60

This forms the basis for what is called in the sequel the local approach for

cumsum tests, resulting in local sequential tests.

1. The Lorden Approximations

As shown in the last section and given by (2-40), Lorden established

bounds on the delay for detection and thz false alarm rate for Page's curnsum

test in terms of the Wald sequential test.

Lorden's theorem (2-40) can be applied to Page's test with nonlinearity

g(x) and a zero score to obtain a new bound. Using Wald's lower bound (2-16)

as derived for his one-sided sequential test we obtain

a < exp{-h(60))

Thus, from (2-40), the mean time between false alarm can be lower bounded

t

T = Eo{N*} > exp(h(00).a), (2-46)
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where h(O) is the unique non-zero root of the moment generating function

(2-11). Using (2-17) and applying Lorden's theorem, the delay for detection

can be upper bounded by:

a + ( 62)
D = El(N*] -< Eag(x) I (2-47)

Equations (2-46) and (2-47) are known as Lorden's bounds.

Remark: Notice that the mean time between false alarms (2-46) is an

exponential function of the stopping bound a.

2. Wald Approximations

Similar results can be obtained by using the approach proposed by

Nikiforov (Nikiforov, 1986). Recall the approximation (2-14) and (2-15)

obtained for the OC and ARL functions for the two-sided Wald sequential

test. These approximations can be used with the modification bT0 (zero

renewal boundary for Page's test). Once again, a lower bound for T and an

upper bound for D will be derived.

a. Lower Bound for T when Efg(x) 0) < 0:

Using Page's result (2-43) and the bound (2-15) yields:
T=L(0,0 0)= lim LI(0'0)

bTO I-Q(O,o0)

>lim 1 a +y( 0)+b -Q( ]-T Efg(x190o} 1+ (o)b-Q(00) I

Notice that the right hand side is a decreasing function of Q(Oo) (since

d/dQ(Q/(1-Q)) > 0 and b < 0). Hence, using the upper bound for Q obtained

for h(0o) > 0 given by (2-14), we obtain:
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T tlim 1 [a+ y( 0) + b 45(0 0)expjh(60)a -1 1
bTO E{g(XIo} 1 1 -exp{h(o)b} I

The last term is a function of b, but both the numerator and denominator

approaches zero when bTO. Using L'Hopital's rule and using the fact that

6(00) > 1 we obtain (Broder, 1990):

1 a+ y(O) h() (2-48)
E{g(x)1 o} h(Oo)

where h(Oo) and 7(0o) were defined in (2-11) and (2-15) respectively.

b. Lower Bound for T when Efg(x) I O0} = 0

In a similar way we obtain (Broder, 1990):

T = lim L.1(0'00)
bTo 1- Q(0,90)

Slim 1 a2 [I-Q(0o)]+b 2 Q(o0)
bTO 1 -Q(0 0 ) E{g2(x)(Oo}

aE{g2(x)lo} (2-49)

Remark: By (2-49) the mean time between false alarms is a quadratic function

of the stopping bound a. Recall that by (2-46) it was shown that when

Efg(x) 0} < 0, the mean time between false alarms is an exponential function

of the stopping bound. Hence, once again it is demonstrated that it is

worthwhile to bias the test to have a negative drift before the change,
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resulting T as an exponential function of the stopping bound instead of a

quadratic one (Broder, 1990).

c. Upper Bound for D

Consider now the delay for detection. Since that for detecting

upward change, after the disorder E{g(x) 1611} > 0 results in h(O) < 0. Using (2-

44), (2-14) and (2-15) in the same manner as before we obtain:

D =L(0, 01)

D= L(0, 1)
1- Q(O, 19)

lim- 1 [a + y(O,)][1 -Q( 1 )]+ bQ(,)
bT -1-Q(,) E{g(x)0 1}

Once again, since the right hand side is a decreasing function of Q(el), and

since b < 0 the inequality is preserved. Thus, as Q(G1)$0, we can replace Q(01)

with zero and obtain

D + E5 a 0 (2-50)

which is consistent with Lorden's bound (2-47).

3. Asymptotic Performance and Measures

For all disorder detection schemes the pair (T,D) determines the

detector performance, just as PD versus PFA (PD being the probability of

detection and PFA is the probability of false alarm) determines the

performance of a classical detector.
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As shown, the ARL function determines uniquely the pair (T,D).

Thus, it is in our interest to examine its asymptotic performance. Hinkley

(Hinkley, 1972) used an asymptotic performance measure for the nonlinearity

g(x) while using PD and PFA as performance criteria. This measure was

derived while calculating the efficiency of the cumsum procedure. The

proposed measure was

logE(exp{-h(Oo).g(x)) I hl}.

Recently (Broder, 1990), another performance measure was proposed

resulting in an alternative technique which allows recursive computation of

the ARL, the stopping bound a increases, avoiding the complicated

numerical integration needed to generate the performance curves (solution

of Fredholm type integral equations).

a. Asymptotic Approximation of the ARL Function

Central limit theorem for renewal processes. (Ross, 1989): For large t, N(t)
t

being a renewal process is approximately normally distributed with mean -

and variance tU 2 /p 3 , where u (p # 0) and c" are respectively the mean and the

variance of the interarrival distribution.

limp N(t)-t/ =(x) (2-51)

where W(x) is the Gaussian cumulative distribution function:

e1 X2/ 2dx.
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Khan (Khan, 1981) used this result to show the asymptotic

normality (in the sense of a-4-) of the run length of Page's test with a

stopping boundary a under P(0):

define: p = E{g(x)0,i} c' = var[g(x)l e]

then: L(91) - - 4- N(0,1)

where N(O,1) is a Gaussian distribution with zero mean and a unit variance.

Using this asymptotic distribution and the results derived in (2-38), a new

approximation can be established for the asymptotic probability that the

average delay is less than a given threshold:

Pr{L(Oj) <x 4  x -a } (2-52)

b. Alternative Asymptotic Performance Evaluation

An alternative way to evaluate the Page test under different

nonlinearities for various noise distribations has been shown by Broder

(Broder, 1990). Define an asymptotic performance measure

r14 lim log ARL(O)
ARL0 - -) ARL(6 1)

= lim log(T)
T-.- D

= lim iog(T) (2-53)
a* D
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Notice that for ql to reach a finite bound, both T and D approach infinity as

a -4 -, thus 77 reflects the asymptotic performance and is the reciprocal of the

slope of the (D, logT) performance curve. This performance measure can be

interpreted in two ways: First, as the ratio of the run-length for the two

hypotheses. Hence, the larger 77 indicates better asymptotic performance;

second, as an Asymptotic Relative Efficiency (ARE) between the two tests.

Recall that for a fixed mean time between false alarms (large enough):

log(T)

ARE 2 = _- = lir D, = __ - L2 () (2-54)
1r2 T1 -i--log(T2 ) D, L, (61 )

T2 -
D2

hence, resulting in the delay ratio of the two tests.

Using Lorden's approximations (2-46) and (2-47) for the Page test,

and ignoring the "excess over the boundaries" we get:

log T > h0o)a

D < a

hence

1 h(O0). E{g(x)1}= . (2-55)

This lower bound ir can be defined as the asymptotic performance measure,

thus, being a convenient way to "measure" Page's test using different

nonlinearities g(x) for various noise distributions.
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Notice that the lower bound 11 can be used as an alternative way

to estimate the expected delay given the desired large mean time between

false alarms.

Property: If g is the log-likelihood ratio, g(x) = log[(f(x 0 1)/f(x 100)], then

under any noise distribution the bound is tight, i.e., 71 = I(01,O0) where

I(6,00) is the Kullback-Liebler information number (2-23).

Proof: Since

E exp log 10 f _e (xi 60)dx =1I

using the moment generating function identity (2-11) it becomes obvious that

h( 0 ) 1.

Hence, t7 = E{g(x)(j1} = ](61,00).

lira logT .(6I(81, 60 )

T--o, D

Recall that by definition: T = E0{N* } > a-1

where a is the Probability of false alarm. Hence

log 0 ,00 -]

D =

10 _g a 1

or Da - 0. (2-56)

Hence, (2-55) can be seen as a generalization of Lorden's result (2-41) for any

nonlinearity function. The root h(O0 ) of the moment generating function

identity "scales" (2-41), thus (2-55) establishes a general bound which can be
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evaluated for any nonlinearity g(x) under any noise enviroiment. We will

be interested in the cases where the strict equality exists (1l = r), which enables

us to get a precise relationship betw een the delay and the false alai'm rate. Tn

the next chapter we will see some examples for which 1i= 17.

C. SUMMARY

In this chapter we show that detecting a disorder presented in ihe

multiple hypothesis framework (1-2) can be don2 by using cumsum type

procedures. One of these procedures, called the Page test, was presented and

investigated in depth. Using renewal theory and ladder variables we present

a new technique to observe the properties of Page's test. Three observations

are shown: first, it is worthwhile to bias the test if it is known thal before the

disorder the mean of the statistic is zero; second, Page's test behaves like an

adaptive detector in the sense that the ladder epochs form a local minima (or

maxima) process in which the past observations which do not contribute

relevant information about the change are forgotten. Finally, we showed the

equivalent representation of Page's test in the off-line and on-line version-.

Page's test implemented with the log-likelihood nonlinearity is shown to

be the MLE of the change time (within the multiple hypotheses testing (1-2)

framework). Using Lorden's results, the asymptotic optimality of Page's ie!r is

obtained in the sense that Page's test implemented with the log-likeliho d

nonlinearity is the optimal stopping rule, that is, the average delay for

detection subject to the false alarm rate which tends tc ,--o is r-*nimizeu.

Thus, the log-likelihood nonlinearity is shown to be the optimal
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nonlinearity, and therefore, Page's test, which is the MLE for this case, is

shown to be the quickest detector for the disorder problem.

Finally, performance evaluation of Page's test was derived. The main

results are what is called the Lorden approximations for the mean time

between false alarms T (246) and delay D(2-47) and similarly, the Wald

approximations for T (2-48) and D(2-50).

In addition, using Broder's results, the asymptotic performance measure

is shown to be lower bounded. The problem of how informative the bound is

for different nonlinearities will be analyzed in the next chapter. Here we

show that for the optimal nonlinearity the log-likelihood, the bound is tight,

i.e., the bound provides all the information needed to predict Page test

performance. Finally, a new simple generalization of Lorden's result was

shown for any nonlinearity function in any noise environment.
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III. THE APPLICATION OF PAGE'S TEST TO PARAMETRIC AND

NONPARAMETRIC CHANGE DETECTION

A. INTRODUCTION

In the last chapter it is shown that implementing the Page's test with the

log-likelihood ratio nonlinearity results in the Maximum Likelihood

Estimator (MLE) of the change time. Furthermore, it is the quickest detector

of the disorder. The problem becomes much more complicated when the

model parameters after the change are not known. In this case, the unknown

random variables, v the change time, and the model parameters 8, have to be

estimated. Thus the detection problem can be presented in the estimation

framework. Joint estimation of v and 8 is a very difficult task because the

disorder occurs at an unknown time and the presence of several unknown

parameters forces the use of suboptimal detectors. Hereby, we present some

competitive ad-hoc methods used for detection and if possible also estimation

of the change time and the model's parameters.

1. Likelihood Oriented Methods

In situations such as detection of an unknown change magnitude of

Gaussian signals it is possible to perform the joint estimation of v and the

unknown parameters 8 (Basseville, 1988). In such cases, the detection

approach consists of replacing the unknown jump magnitude of the model

parameter by its MLE. The Generalized Likelihood Ratio (GLR) test of the

joint estimation becomes
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H1

max maxSn(v,0 1 ) >
15_v:_n 01 HO

where sn(v,01 ) is the log-likelihood cumsum statistic. This double

maximization problem of estimating both the change time and the

parameters is reduced to a single maximization of the cumulative sum since

the Gaussian characteristic of the signal to be detected allows an explicit

solution as a function of 01 for the likelihood ratio test. (Basseville and

Benveniste, Eds., 1986, Chapter 1). Hence the change time estimate becomes

,(r) = arg min S" (v,0).
V

This property is still valid in a more general situation when we consider the

problem of det.cting additive changes in linear models described in state-

space representation and leads to an efficient change detection algorithm with

reasonable computing cost. An earlier approach consists of monitoring the

innovations of a Kalman filter, because of the linear property of the system

and additive effect of the change on the system, it may be shown (Willsky and

Jones, 1976) that the effect on the innovation is also additive. Moreover, the

Gaussian characteristic of the state and observation noises which ensures for

an explicit solution in 01 for a likelihood ratio test, is still valid in this

situation. These points were explored by Willsky and Jones (1976) who

derived a recursive algorithm for the GLR test computed for the innovation

of a Kalman filter designed under the no change hypothesis. The distribution

of these innovations with respect to its past values, thus, the cumulative sum

to be computed in this case is in the form of
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where P91 reflects the change in a certain parameter (change in the mean,

variance, etc.). The GLR test is then

HO

As mentioned above, the maximization over 01 is explicit because of the

Gaussian assumptions of white noise and additive changes, hence the test for

the change time is reduced to a single authorization even in this more

general situation.

In the case of detecting changes in model eigenstructure such as

changes in AR or ARMA models or equivalently in the state transition

matrix of a state-space representation of a model, the problem of the joint

estimation of the change time v and the changing parameters is more

complicated. At this point we need to distinguish between two types of

situations: in the first case, if the signal or system is known to have the same

behavior as an AR or ARMA process, then the model is descriptive enough

for its parameters behavior to be detected (Basseville, 1988). The second case

reflects a situation where the signal or system is not known and the main

issue is to detect changes in the eigenstructure, then the AR or ARMA

models are nothing but a tool for detection of such changes.
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2. Simplification of GLR Tests (Two Models Approach)

In the case of segmentation of signals resulting from AR models such

as speech segmentation (Andre-Obrecht, 1988) the detection of abrupt changes

in the AR parameters is performed via the comparison between a long-term

model M 0 identified in a growing window and a short-term model M 1

identified in a sliding window of fixed length. (See Figure 3.1) This method

is shown to be a simplification of the GLR test since for implementing the

GLR, the maximization over e (the AR vector parameter) is no longer explicit

because the change is not additive on the observation. Moreover in the case

of ARMA models, the cumsum is no longer linear in the parameter,

therefore the test becomes quite expensive since for each possible change time

r we need to use the data (r, r+1, ..., n} for identifying the AR model M1 after

the change and compute the log-likelihood ratio cumsum Sr, then maximize

over r. In the case of AR models, this method is not only expensive but leads

also to boundary problems (Deshaves and Picard, 1986).

The two model approach simplifies the GLR test by using a fixed

length sliding window as opposed to varying length windows needed to

implement the GLR test. Different statistical distance measures between the

long-term and the short-level models were proposed by Appel and Brandt

(1983) and Segen and Sanderson (1980), Basseville and Benveniste (1983,

1986), Ishii and Iwata (1979) and Andre-Obrecht (1988). Most of these

measures are based upon innovation testing which in turn is based upon the

conditional distribution of the observations.
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a . Scheme for the GLR test.
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Figure 3.1. Schemes for
a. GLR test

b. Two Model Method

3. The Statistical Local Approach

Another approach for overcoming the drawbacks of the GLR tests is

known as the "local approach" and has been introduced in change detection

problems by Nikiforov (1983, 1986) for on-line detection for AR models.

The original idea of Nikiforov consists of looking for small changes

in AR or ARMA models and using the Taylor expansion of the log-likelihood

function. His method results in a statistic function

g(xn) = -log PO(xx-... =

8 =
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In other words, instead of monitoring the observation process {x ,j or the

innovation process, the local approach monitors g(x). The key result (Deshays

and Picard, 1986) is that there exists a central limit theorem for g(x), for which

any change in 6 is reflected in a change in the mean of g(x) for iv-ich Page's

test or the GLR tests can be used. Nikiforov derived two algorithms based

upon cumsum tests for two different priors about the change directions.

Different applications for these algorithms are described in Nikiforov

(Nikiforov, 1986). Another use of these methods is in the area of recursive

parameter identification. Benveniste (Benveniste, 1987) has shown that for

any general recursive parameter identification algorithm

'n = tn-I + Y'Hn(On-1,xn),

where rn denotes the varying gain and Hn denotes the statistic, applying the

local approach to the statistics Hn( 0 ,x,) where *0 is a reference model, enables

one to transform the problem of changes in the parameter vector 9 into the

problem of detecting a change in the mean value of an asymptotically

Gaussian distributed process which is a cumsum of the function H().

Finally, Basseville (Basseville, 1987) and Benveniste (Benveniste,

1987) introduced another use of the local approach technique. In the case of

detecting changes in the AR part of a multivariable ARMA process having

unknown and time varying MA coefficients. Because the Fisher information

matrix for an ARMA process is not block diagonal with respect to the AR and

MA parameters (because of the coupling between the unknown monitored

parameters and the unknown changing MA parameters), neither the

likelihood function nor its Taylor's expansion (local approach) can be used.

By using instrumental statistics on the observations (Benveniste and
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Basseville and Moustakides, 1987), the changes in the AR portion are reflected

in changes in the mean of the instrumental statistics. By looking for "small"

changes in the AR coefficients, the local approach statistic, i.e., Taylor's

expansion of the instrumental statistics results in an Z2 test

H1T 1u > ;L

HO

where Un is the instrumental statistic vector (which is asymptotically

Gaussian) and E, is its covariance matrix.

B. ORGANIZATION OF THIS CHAPTER

In the introduction section, different competitive methods of Page's test

were briefly described. Some of them enables one to detect (or estimate) the

change time together with estimation of the changed parameters. Now, we

will only be concerned with the quickest disorder (change) detection problem.

In the case of implementing the log-likelihood nonlinearity, the Page test is

the optimal (quickest detector) for the disorder problem but assumes that the

observations are ii.d. distributed with one distribution before the disorder

and another distribution after the disorder. However, in the case that the

ii.d. assumption does not hold, other detection schemes "tuned" to the

specific problem may perform better than the suboptimal Page test. Despite

these concerns about Page's test, the test will be shown to detect the change

instants occurring at random times very efficiently. This chapter focuses on

general implementation of Page's test for both parametric and non-parametric

detection, and evaluation of the test's performance for the implemented

nonlinearities, by using the results in Chapter II.
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Section C introduces the case of detecting Jumps in the mean of Gaussian

distributed observations. Both upward and downward directions are

considered as well as the case when the change magnitude is unknown.

Page's test implemented for this problem, (derived from the on-line point of

view) and the GLR test (derived from the off-line point of view) are shown to

be the same.

In Section D, performance evaluation for Page's test is evaluated for

different nonlinearities in Gaussian and Gauss-Gauss mixture noise

environments. In particular we are interested in the cases where the lower

asymptotic performance bound 7 is tight (i.e., 17 = 17). In the parametric

framework, the problem of detecting changes in the mean and variance of

Gaussian observations is shown to result in 17 = 17 for which the performance

measure is easily computed. As a second example we consider a suboptimal

implementation of Page's test where the distribution after the disorder is not

known and by the use of composite hypothesis technique, a new test is

derived. This local optimum detector is based on Wolcin's test (Wolcin, 1983)

and a modification (Broder, 1990), and is modified to detect energy changes

occurring witl:in frequency "windows." New performance results are

obtained and shown to be consistent with the simulation results. Finally, in

the nonparametric framework, the sign test is analyzed by using results from

random walk theory, and shown to have the property q = tj.

Section E summarizes the main results of this chapter.
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C. DETECTING JUMPS IN THE MEAN

We begin in this section with the simplest application of the Page test,

namely the problem of a change in the mean of independent identically

distributed Gaussian random variables. This problem is an important one

since, as will be shown in the sequel, many complicated problems involving

abrupt changes in the eigenstructure (parameter changes) can be converted to

the problem of change in the mean. Two cases are considered: the first, when

the means before and after the change are known, and secondly when the

means and therefore the change magnitudc is unknown.

1. Known Means before and after the Change

Let {e,} be a Gaussian white noise sequence with variance a 2, and let

1x,) be the observation sequence such that

x =An+en n=1, 2,...,N

where:

go ifnv-1
n p, if n v.

Consider now the likelihood ratio test between the "no change" hypothesis:

H0 : v > N

versus the "change" hypothesis:

H 1: v<N.

Thus, the log-likelihood ratio between these two hypotheses has the

following form (Basseville, 1988):
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V-1N

L(v)= fIk=lPo(Xk) (Xk "P1(xk) (3-1)rHk=lPO(Xk) k=vPO( xk) "

therefore, its logarithm is given by:

lnL(v) =1 -( I+'1 SN (Ao, A) (3-2).2  _~ 2 a 2  v

where A = pl-po is the magnitude of the jump, and

s1~(p,)= Y.(Xk -)U -2
kzi

Replacing the unknown jump time v by its maximum likelihood estimate

under H1 yields:

V-1 N
ar min f" PO(xk) . H P1(Xk) = argminS N(.oA).
i_ N lk=O k=v J I V

Thus, we get the following change detector:

H1

gN6L(v)=maxS',r(pO,A) < a (3-3)
V Ht

where a is a threshold properly chosen as addressed in Section C.

This detector can be described also as follows: detection occurs the

first time at which

gN=:s(pA)- min S(p,A )> a (3-4)

which is nothing but the Page-Hinkley stopping rule or cumsum algorithm,

and may be computed in the following recursive manner:
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gn =9n-1 + xn - 0 - (3-5)

Thus, both Page's stopping rule (derived from the on-line viewpoint) and the

generalized likelihood ratio (GLR) test (derived from the off-line viewpoint)

are identical. The behavior of the Page-Hinkley stopping rule is depicted in

Figure 3.2.

2. Unknown Magnitude of Change

In this case we may assume that po is known, but u1 is not. A

minimum jump magnitude Amin to be detected is fixed a priori. Two tests are

running in parallel corresponding to two possible directions (increasing or

decreasing mean).

For detecting a decrease in the mean we determine the stopping time

N by observing when the maxima process drops down Ly a, the detection

threshold (see Figure 3.2).

N = infin: max Sk-S > a}
l<_ A in

where Sn = If'xk -PO (3-6)
k=l1

So = 0.

Similarlv for detecting an increase in the mean we define

N= inf{n: min Sk -Sn > }

A m i ( 3 - 7 )where Sn = Xk -(3) 2

k=12
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a

b

Figure 3.2. Page-Hinkley Stopping Rule as the Process of
Global Minima (for a) and Global Maxima (for b)

a. Detecting Upward Change
b. Detecting Downward Change

The change time v is estimated to be the last maximum time before

detection. Similarly, the change time v is estimated to be the last minimum

before the stopping time. Notice that this test corresponds to a linear

transformation g(x) = x as described in Chapter II with bias terms: 4'0 ± k.

Figure 3.3 illustrates the recursive version of Page's test when Amin, the
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unknown change magnitude is set to be 0.2, the change time is at 100 and the

SNR of the input signal is -3dB.

D. PERFORMANCE EVALUATION OF CUMSUM PROCEDURES

As shown in Chapter I, we characterize the performance by the mean time

between false alarms T, and the mean delay for detection D. The asymptotic

ratio between log T and D was shown to be defined by (2-53) and (2-55):

77= lim o t h(Oo).E{g(x)10 1 }= 77 (3-8)
T- D(a)
a-4

where a is the threshold of the test. This relationship is influenced by two

factors: The first is the transformation or nonlinearity g(x). The second is the

statistical properties of the observation before the change (the root h(Oo) is a

function of the SNR) and after the change (Efg(x) 101)).

In the sequel, several nonlinearities are presented and analyzed in

different noise environments. Special attention is given to these situations

which result in equality in (3-8), namely:

lim log T(a)
T--. D(a) =h(6o)'E{g(x)01 }

resulting in an easy way to calculate the asymptotic performance of the

detector.

Notice that for the cases where (3-8) is an equality, the relationship

(logT)/D enables a comparison of Lorden bounds (2-46), (2-47) and Wald's

bounds (2-48), (2-50) for the pair (T,D) with the correct performance measure
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Figure 3.3. Detecting a Change in the Mean of Gaussian Observations using
Page's Test
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(3-10). Both bounds are based on the root of the moment generating function

h(O) and the statistics after the disorder E(g(x) 1 01. The following subsections

present some examples for which performance curves specified by calculating

pairs of (T,D) for many values of a, the stopping boundary, and k, the bias

term. Thus, the use of the approximating equations for (T,D) enables us to

find the pair (a,k) for a given performance requirement (TD).

1. Parametric Detection

For parametric detection schemes it is assumed that the general form

of the statistics before and after the change is known. If the parameters after

the change are not known, composite testing techniques could be used as

shown in the sequel.

To illustrate the performance curves, we consider the situations

where the noise distributions before and after the change are both Gaussian

P(x)=- 1 a2exp(_x2 / 2o.)

and also the case where both densities ire Gauss-Gauss mixtures (Kassam,

1987):

P(x) = (1-) 1 e _e /2a.2 (3-9)

with variance Cr 2 = ( 2-) + E21.

The Gauss-Gauss mixture density is the first two terms in

Middleton's Class A model where the noise density function is modeled by an

infinite weighted sum of Gaussian densities with decreasing weights and

increasing variances, and has been used to model interfering waveforms
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(pulses) and narrowband noise. The parameter e indicates the amount of

contamination and is typically in the range (0,0.25). For small enough values
2of e, the behavior of P(x) near the origin is dominated by that of a, . For large

2values of I x I, 00. dominates the behavior of P(x) since its tails decay at a
2slower rate than do those of 0o. Thus, the relative strength of the

contamination is given by the power ratio y2 4 -Toa-0 . Adjusting the

parameters (E,Y) we can determine the performance of the cumsum

procedures for a wide range of distributions including those with heavy tails.

A second disorder situation results in the assumption that before the

disorder Po(x) is Gaussian while after the disorder Pl(x) is a Gauss-Gauss

mixture. We consider the linear detector g(x) = x, and the nonlinear log-

likelihood detector and the local optimal energy detector g(x) = x-1.

a. Detecting Disorder in Gaussian Measurements

If g(x) is the log-likelihood nonlinearity, then it has been shown

in Chapter II that in the limiting situation the bound is tight, i.e., = 7= 7"

where

tj = lim logT =

T-4. D

where I(6i,0o) is the Kullback-Liebler number defined in (2-23). In the case of

a change in the mean, i.e., Xi - N(yo,0.2) for i < v, Xi - N(pl, "2) for i > v, the

Kullback-Liebler information number is given by (Therrien, 1989)

17= lim (logT / D)
T--

= I(00,e0)

=(,A,) 2 / 2 U 2  (3-10)
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with

Thus the result can be directly related to the signal to noise ratio Ay / a.

Notice that this result is consistent with the result obtained in (3-2) for

detecting jumps in the mean of i.i.d. Gaussian observations using the

nonlinearity

g(x) = -- U(x-IR0 -Ap /2)

which results from the log-likelihood ratio test. For this nonlinearity:

71= E{g(x)101 1

(p, - go -Au / 2)

=(zip)2 / 2&'.

In the case of detecting a change in the variance of zero mean

Gaussian i.i.d. observations, the log-likelihood ratio results in a square law

type detector and is given by

g(x) = cx 2 + in y

where

C CO2 ra2 ' a

Notice that for detecting an upward change (y < 1), c is positive and ny is

negative, while for detecting a downward change (y> 1), c is negative and lny

is positive. This explains the behavior of the Page test as illustrated in Figure

3.5. Thus, the performance measure is given by
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= E{g(x)0 1}

COcT +lny

1[7-2 1]+Inry (3-11)

which is as expected the Kullback-Liebler information number for this case.

The dosed form in which the asymptotic performance measure is

given allows one to compute easily the performance curves.

Figure 3.4 illustrates the performance curves when detecting a

disorder in the mean of Gaussian measurement (as illustrated by Figure 3.3)

using the optimal nonlinearity g(x) =Ay (x - o- Ap1/2) for different signal to

noise ratios (Equation 3-10). The predicted results obtained for the delay as a

function of a given SNR agrees with the simulation results shown in Figure

3.3 within a tolerance of up to 10 samples.

Figure 3.5 illustrates a changing variance Gaussian signal with

y= 1.2 (downward change), and change time at 150. Also, the optimal Page

test using the square law nonlinearity g(x) = cx 2 + lny applied to this signal is

shown. Notice that in this case of y> 1, F{g(x) 100) < 0 while Etg(x) 101)} > 0 as

needed.

Figure 3.6 illustrates the performance curves for the square law

detector nonlinearity (3-11). Notice that when o -4oo which means that the

changes become undetectable, the bound given by Equation (3-11) turn to be

noninformative since 17 -* 0. Thus, the delays obtained for values of y

approaching 1 are higher than those obtained for values of ' which are

distant from 1. Notice also the bell curve shape of the ARL function for this

detection scheme (which is consistent with the example shown in Figure 2.9).
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Figure 3.4. Performance Curves for Page's Test Implemented with the Linear
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Figure 3.5. Changing Variance Gaussian Signal and the Corresponding Page
Test Implemented with the Square Law Nonlinearity
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b. Locally Optimum Energy Detector for Spectral Signatures

Consider the case where we observe the energy spectral density of

a signal. Under the "no change" hypothesis we assume without loss of

generality that the background noise process (y) is normalized (i.e. or = 1)

White Gaussian Noise (WGN) and is grouped in disjoint blocks of M points

for processing via the Discrete Fourier Transform (DFT). Hereby we assume

that the sample blocks are mutually independent. The squared magnitudes of

the M complex outputs of the DFT are computed and these random outputs

denoted by {Xi,,,, i = 1, 2, ... , m = 1, 2, ..., M where i is the block number and

m is the frequency bin number, form the Periodogram and are available as

the observations for the detection procedures. Namely,

SXj'm} I DFr[Yi,m 112

where

Yi,m =y(iM+m) i=1,2,... m=1,2,...,M.

Hereby, we are interested in detecting a change within a specific frequency bin,

while the method described here can be also used to detect a change from

block to block as was done by Broder (Broder, 1990), thus, our method

modifies Wolcin's method (Wolcin, 1983) by looking for a change in an

orthogonal direction (frequency) to the direction (block) used by Wolcin's.

Moreover, we use a narrow "window" of frequencies to detect changes within

several frequency bins in order to detect a certain spectral signature.

Under the white Gaussian noise assumption, the variables {Xi,m}

except the first one m = 1 the first frequency bin, are independent and
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identically distributed with exponential distribution and unity mean, having
2

the Xj distribution (Kay, 1988)

P0 (Xi,m) = exp{-Xi,m}I.

Under the change hypothesis, the distribution of {Xi,m} containing the signal

in addition to the WGN, will also be presumed to be exponential but now

with mean Li,r > 1. This is due to the fact that under the change hypothesis
2

Xi,,, has a noncentral Zj distribution with a noncentral parameter (Whalen,
21971) X > 0, thus the mean Ai of the non central X, distribution is given by

'U = X+1 > 1.

Thus, if we assume that after the disorder pi,m does not depend on i, we have

Pi(Xi,m) = '1 exp{-Xim / AUm.

This is the case when the signal itself is also a Gaussian signal which is

independent of the background WGN. Hence, the original hypothesis testing

of

H0 : {y I}- WGN

versus

Hi: {Y} ~ Gaussian signal + WGN

in the signal domain, is equivalent to the hypothesis testing in the spectral

domain.
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H0 : Xi,m - exp{-Xi,m} i = 1,2,..., m = 1,...,M

versus (3-12)

Hj: Xi,?n -,Um- exp{ -X'm / PM i = 1, 2,..., m=

Pm > 1.

Because the parameters {pm) are not known a priori, Page's test with the

optimal nonlinearity the log-likelihood ratio cannot be implemented. Thus,

we will use composite hypothesis techniques such as the Locally Most

Powerful (LMP) test statistic. In Chapter II we introduced the local optimum

nonlinearity.

glo(x) = d0 P(x; 6)/P(x; 0)
do

= d_n P(x; a + AO)

do P(x-O)
AO =0.

where P(x;O) denotes the observations density conditioned on the parameter

e. This test measures small deviations from the "null" hypothesis, hence, as

was shown in Chapter II, it maximizes the efficacy (incremental signal to

noise ratio) of the test.

Using this function for testing between the hypotheses p = 1 and

/p > 1 for the case of univariate exponential distributions yields the following

nonlinearity
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go()= lim-dlog
P (x IA > 1)

jul au P(xlp =1)

lim d lo& 4-1exp{-x/p}
p,1i d#u exp{-x}

= lim -(-logp - x // + x)

= lim(x/g / P,- )

=x -1.

Thus, gto(x) does not depend on p after the change, this results in a locally

most powerful test for all p > 1.

Implementing Page's test for bin number m yields

Si,m = max{o,S.i-,m + g(xim)}

kOm =0

where g(Xi,m)= Xim - l-k (3-13)

where k is a positive parameter or reference value needed to bias the test for

the null hypothesis, such that E{g(Xi,m) 1,4m = 1} < 0, since Page's test performs

better when the mean of the nonlinearity before the change takes place is

negative as opposed to zero.

At this point it is important to notice a robustness property of this

detector. Since the method is based upon detecting changes in the energy

(periodogram), and since it is assumed that the disorder is independent of the

background noise, the presence of the signal with a certain frequency

component will increase the total energy in the corresponding frequency bin
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which is to be detected. Hence, the underlying signal model should not

assume a specific model for the signal.

The performance of Page's test (3-13) is determined by the

parameters a and k. Hence, with two debrees of freedom the test results in

many pairs (a,k) that yield the same performance. The problem is to find a

specific pair which results in a high detection probability. In order to

determine the performance in this situation, notice that since the parameter

M is not known a priori, the performance measure q cannot be determined

since E{g(x) I 01) is not explicitly known. Thus, we shall use Lorden's bounds

(2-46), (2-47) and Wald's bounds (2-48), (2-50) to obtain informative bounds

for the false alarm rate. In order to obtain these bounds it is necessary to find

the root h of the moment generating function identity (2-11) before the

disorder (Broder, 1990).

1= Ejexpjh. g(Xi~~ y= 1} m =I..

= E {expjh. [Xi,m -1 - k}im=11

= exp{-h(1 + k)4. E{exp{hXm}Lm = 1}

= exp{-h(1 + k)} / (1- h). (3-14)

The root is shown to be a function of the bias term k. Figure 3.7

illustrates ti'Is relationship. Notice that the root h does not depend on the

DFT length. This fact will be shown to be the key to the surprising

observation shown in the sequel that the SNR per bin does not depend on the

DFT length.
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Figure 3.7. The Root of the Moment Generating Function Identity (2-11) for
g(x) = x-1-k as a Function of the Bias Term k

Notice that the root is upper bounded by h < 1. Recall that by

(2-46) T _ exp{h(0).a}. Thus, large values of h are desired. Recall also that 7 is

lower bounded by 7. Consequently, for a given false alarm rate, a larger 77

corresponds to a smaller delay. Thus, from (2-55) it is clear that larger values

of h are desired, which means that biasing the test with larger values is

favorable.

In order to improve the poor statistical properties of the

periodogram (standard deviation of the order of the mean), a window of

length W = 3 that groups the expected frequency bin and the two neighboring

frequency bins was taken. Thus the statistic function g(x) was modified to
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mj+2
g(Xim)= 3 (Xim-1-k) (3-15)

where mb ml+,, m1+2, are the frequency bins used by the window. A typical

time/frequency sample grid is shown in Figure 3.8.

32 points Dft periodogram,Grid(125x32)

I frequency

125 W", I m1 +2

time

Figure 3.8. Time/Frequency Sample Grid

Notice that in this case the root location depends on the window

length since for that case the moment generating function has the form
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1 E exp h-1- k)} I

= (E mexp. (Xi,, 1 k)j,m 1

= exp{-(1+k)}. (3-16)

Figure 3.9 illustrates the root location for the given window W = 3.

Moment Generating Function, Implementing Eq.(3-15)
3I I I I I I 11111

2.5

._ .. 1 .5 - -

1: 

0.5- 1 1
I / 1 II I I I 1 I I I '

100 10l 102

bias

Figure 3.9. Root of Moment Generating Function for

1m+2
g(x)= 3 (Xi,m -1-k)
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Notice that the root is upper bounded by 3. This implies that the mean time

between faice alarms T will be larger in this case than the previous one, since

with the same bias level a higher root value is obtained. However, if the

averaging of the window frequencies were done by the function

g(xi,m)= ,(Xi,m- -k) (3-17)
m=mj

the root location would be the same as in (3-14), i.e., upper bounded by 1. This

may imply that the averaging method (3-15) performs better than the others.

The problem is that we would like to determine the performance

with a given pair of (a,k), but since the function g(x) was based upon a

suboptimal hypothesis test, only bounds (Lorden and Wald) can be derived.

To resolve this problem the following method is presented.

Consider that we are given the desired mean time between false

alarm T and some minimum value for p, say Mmin(>I) of hum for which we

can test. In this situation, Page's test using the optimal nonlinearity, the Log-

Likelihood Ratio (LLR) can be implemented. This results in

g(x) = (1- ,L)x + logA (3-18)

where A =/1-i

and Page's test (3-13) is implemented with the function (3-15) and a new

threshold a'. In order to find the relationship between the pairs (a,k) and

(a',k) of the tests (3-13) and (3-15) we will use the following analysis:
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NIo = inf{i: 9i -a}, 9i implemented with (3 - 13)

NLLR = inf{i: Si > a'}, 5i implemented with (3-15)

Hence, we obtain

NLLR = inf{i: Si_ + Xi,m+log[;m /(1-Am)] -a'1(1-A,

No =inf{i: Si 1l+Xi,m-1-k a}. (3-19)

To achieve the same performance requires that the following relationships

will sustain

a = a'/1-Am

k = log[AM /(1-Am)]- 1. (3-20)

Notice now that for the log-likelihood ratio function h(O0 ) - 1. Thus, for the

given average time between false alarms, T, equation (2-46) becomes

T -a exp a'.

Hence, the following procedure can be implemented:

* given T, the threshold a' which guarantees that requirement is given

by

a' = lnT, (3-21)

* use (3-20) to find both the threshold a and the bias k needed for

implementing the local optimum test given T and pra. Hence, this test

is now "tuned" for the desired performance.

To summarize, this procedure allows the use of optimal nonlinearity in order

to find the specific pair (a,k) needed to achieve the performance requirement

for the energy detector.
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A second and even more practical way to determine the test

parameters (a,k) is by using the SNR per bin which is required to meet the

performance requirements. Hereby, the notation S relates to the signal and N

to the noise (in the spectrum domain). Decomposition of the data yields

(provided that energy exists only in one of the frequency bins)

1 m (+2EXm1k)s+N: ElWC1=
m=mt

_ A.lm -k

3
=1/h(k).

Thus,

SNR =.u, - 1

3 77[- +k] (3-22)

Notice that k and h(k) were determined to achieve a given lower bound for T,

thus, 7 given by (3-8) determines the asymptotic ratio for the desired pair

(T,D). Hence, using equation (3-22) en-bies us to find the corresponding SNR

per bin which is required to achieve the desired performance. Figure 3.10

shows the SNR required per bin as a function of the bias term k for different

values of the asymptotic measure il. Notice that each given k corresponds to

a certain T, thus, the corresponding delay value, D, is found from the graph by

using the assigned 17 needed for certain SNR.

Analyzing (3-22) reveals an important result. Larger values for 17

correspond to a smaller delay, D, in detecting a disorder. Thus, larger values
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of k are needed. If the function (3-13) had to be used, the SNR per frequency

bin would remain the same. Thus, using (3-15) does not improve the

minimal SNR required per bin to achieve some level of detection probability,

but improves the overall performance by having a lower false alarm rate.

However if we implement nonlinearity (3-17), decomposition of the signal

and noise yields (provided that energy exists only in one of the frequency

bins)

Ejg(Xjm)Oi}= I E+2 i,,j1k
ma=m 1

=p-1-3k

h(k)

hence, the mi.imal SNR per frequency bin is given by

SNR=gu-1

= 17 +3k. (3-23)

h(k)

Figure 3.11 illustrates the SNR function as a function of the bias k for the

nonlinearity (3.17). Hence, there is an SNR improvement of the order of

1-3dB. This is a surprising result because one would expect that since the root

for (3-17) is upper bounded by one as opposed to the root of (3 15) which is

upper bounded by 3, the overall performance of (3-15) will be better. Thus, a

tradeoff between the delay and the minimal SNR required for detection is

determined by the bias k. Moreover, analyzing (3-23) reveals an important

result. Larger values for 7 correspond to lower delay and better detector
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performance, thus, larger values of k are needed. But this is opposed to

having lower values of k which are needed to obtain the required SNR per

bin. Hence, the chosen bias term k should reflect a tradeoff between these two

conflicting requirements.

Simulation results were done by using the function (3-17) data

records of length 4000 samples where the change point was at sample 2000

(i.e., middle of the record). The Nyquist frequency used was 500Hz, and at the

change point the transition was from 62Hz to 156Hz. We used two

algorithms, one of which uses a 32-point DFT producing a time/frequency

grid of (125x32) points and the other uses a 128-point DFT producing a

time/frequency grid of (30x128) points, where the corresponding processing

gains are 12dB and 18dB respectively. Hence, using Figure 3.10 allows one to

predict the detection performance. An incoming signal with input SNR of

-3dB cannot be detected by using a 32-point DFT since the output SNR is 9dB,

which is below the minimum SNR per bin required for detection. By using a

128-point DFT, the output SNR is 15dB, which is about 3dB above the

minimal SNR required for detection. The same analysis done by using

signals with input SNR of -6dB reveals that the 32-point DFT cannot detect

the changes, while a 128-point DFT copes with the detection successfully.

Figure 3.12 illustrates the time/frequency grid for the case of using a 32-point

DFT with input SNR of -6dB, while Figure 3.13 illustrates Page's test

implemented on bins 19, 20, 21 (bin 20 being the 156Hz bin) by using a

128-point DFT to detect energy at 156Hz with input SNR of -3dB and -6dB

respectively. Similarly, Figure 3.14 illustrates Page's test implemented on bins

4, 5, 6 (bin 5 being the 156Hz bin) by using a 32-point DFT with input SNR of

-3dB and -6dB respectively.
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Figure 3.13. Page's Test Implemented on Bins 19, 20, 21 of a 128-Point DFT
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Figure 3.14. Page's Test Implemented on Bins 4, 5, 6 of a 32-Point DFT
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In order to compare the detection performance of the Page test

with a conventional detection scheme we refer to Whalen (Whalen, 1971) in

which the performance (Receivei Operating Characteristic-ROC) for

detecting M independent sinewave samples in white Gaussian noise by using

a linear detector (which is the locally optimum detector for Gaussian signals,

see Kassum, 1988), is analyzed. Even though the detection is not based on

energy, the comparison presented in the sequel indicates better performance

of our method. Figure 3.13 illustrates the Page detector implemented on a

'128-point DFT. For an incoming signal with SNR of -6dB the delay for

detection is 4 blocks and the minimum SNR required for detection (using the

proper bias value to minimize the SNR) is about 12dB for 7=10 and about

6dB-8dB for 77=1. The corresponding bounds for the false alarm rate are 10-40

and 10-4 respectively. Figure 3.15 illustrates the ROC for a linear detector for

detecting four independent samples (equivalent to delay in detection of four

blocks) of a sinewave in white Gaussian noise (Whalen, 1971, p. 250) where

the parameter is the SNR required for detection. For this classical detection

scheme the ROC is in terms of PFA versus PD. Thus, to compare the

performance of these two methods we refer only to values of PD---)l to reflect

that the detection is almost surely certain. Figure 3.15 illustrates that for

values of 6dB-8dB the performance of the linear detector is very poor since

the PFA is in the order of 10-1-10 - 3 respectively, while for the Page test it is at

least 10-4. Furthermore, for the linear detector as the PFA is lowered, at a

given (fixed) SNR the PD decreases, while for the Page detector, equivalently

lower PFA (corresponding to higher mean time between false alarm,;) requires

a higher threshold and reflects in a higher delay but still, the detection is

guaranteed. In the operating ranges of above 9dB (which is the typical

operating range for this type of detection) the Page test is shown to have better

performance than the conventional linear detection.
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Figure 3.15. ROC for Detecting Sinewaves in White Gaussian Noise (four
samples averaged). From Whalen, 1971.
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2. Non-Parametric Detection

Hereby we will consider only the sign detector defined as

1 for x > 0

-1 for x < 0

This nonlinearity is sometimes also referred to as random walk nonlinearity

since the output g(x) is a random walk. Thas, results from random walk

theory can be used. Define:

p(6) = Prfg(x) = 11I8}

q(O) = Pr{g(x) = -1ie}.

If p(O) * q(9) there is a positive probability that the process will drift to +oo if

p(8) > q(G) (and to -oc if p(G) < q(9)). Thus assuming that E{g(x) 1 8o} < 0 yields

p(0 o) < q(0o) while assuming Efg(x) I 10} > 0 results in p(61) > q(01).

The moment generating identity is given by

E{exp{h(O0 ). g(x)}180} = p(9O)exp{h(t9O). (+1)} + q(OO)exp{h(6O) (-1)1

-'1.

g (Oo)
Consider h(o) = np(Oo), thus,

E{exp{ln q('oO ).g(x)}e° = °p( o) q(O0 ) +q( 0). P(teO)
P0)P(60) q(00)

= p(Oo)+q(o0)= 1.

Hence,
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h(Oo)= n q(O)

and

E{g(x)1 } 1= p(1) - q(01) > 0.

The result is that the lower bound on the performance measures is given by

= q(Oo)_7 = [p(0) )- q(0 )] log q-00)

In order to evaluate the performance measure 11, we will use results from

random walk theory (see Karlin and Taylor, 1984, p. 109) for the

approximation of the ARL function of Page's test as done by Broder (Broder,

1990).

:1- q(,)a

ARL(e) - 1O tP) ifp(O)*q(O). (3-24)
q(O)-p(O) p(O)

q(O)

Since under O0, q(O0) > p(eo), the average time between false alarms for large a

can be approximated as
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_[q(00o)Ia
T1 [P(OO)

q(Oo)-p(OO) p(00)-

q(00)

=q(00) [I Ia
[p(8O) - q(00)1'

[q(Oo) ]a

Under 01, p(01) > q(01), hence, the average delay for large a is given by

aD=p091) - q(01)

hence, the performance bound q is given by (Broder, 1990)

7= lim logT
a--oo D

l[ i,) a

a / [p(01) - q(01)]

[p(01) q( o0)
- q(9,)]log( 8T)

Using this result allows the comparison of Lorden and Wald bounds

with the approximated results from random walk theory.
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For the simulation results we considered the symmetric additive

signal in noise situation, i.e.

P(x-6) i=0
P(XI6Oj) =

IP(x+6) i=1

and the noise environments considered were Gaussian and a Gauss-Gauss

mixture. In order to calculate the p(O) and q(9) parameters as a function of the

signal and noise parameters consider the following

Pr{g(x) = ±1} = Pr{x > 01.

Thus, by knowing the mean of the incoming signal we can use the

complementary error function to derive both the Gauss and Gauss-Gauss

mixture cases, as shown in Figure 3.16. For the Gauss-Gauss mixture

p(0 1) = (1- E)P1( 01)+ ep (01)

q(0 1)= 1 -p(O1)

for which p(01)< q(O). It follows from the symmetric signal assumption

(uo = -I') that

p(6 o) = q(61)

q(O) = p(O1)

which results in the desired situation of q(Oo) > p(Oo).
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Figure 3.16. p(O) as a Function of the Signal and Noise Parameters
(Symmetric Case, Gauss-Gauss Mixture)

As shown in the previous example, the root of the moment

generating function is needed for Lorden's and Wald's approximation. Figure

3.17 illustrates the root position for different pair values of (p,q). We see that

as p(Go) < 0.5 becomes larger, the root is smaller which indicates that for a

given false alarm rate the delay for detection will be larger due to the fact that

p(Go) approaches q(Oo), resulting in a difficult decision situation. In the

neighborhood where q(Oo) is slightly larger than p(Go) E{g(x) 1 8o0 = 0. In this

situation, biasing the test is needed since the root approaches zero and the

bound 77 is not informative anymore.
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Figure 3.17. The Root of the Moment Generating Function for the Sign Test

Figure 3.18 illustrates Lorden's, Wald's, and the random walk

approximation (3-20) as functions of the threshold a for a certain case where

before the disorder the difference between p(Oo) and q(6o) is large enough.

The results indicate good detection bounds. Figure 3.19 illustrates the same

approximations but now when q(Oo) approaches p(Oo), the degradation in

performance is shown to be in the order of several magnitudes. The values

for q(0o) and p(Oo) were chosen to simulate two cases of Gauss-Gauss

mixtures, resulting in p(&0) = 0.15, q(Oo) = 0.85 for the first case, and p(OO) = 0.4,

q(00) = 0.6 for the second case.
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Figure 3.18. Sign Test. Mean Time between False Alarms for
p(Oo) = 0.15, q(Oo) = 0.85
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Figure 3.19. Sign Test Mean time between False Alarms for
p(Oo) = 0.4, qlOo) = 0.6

To analyze the delay for detection we use a similar technique, but

since we now explore the situation after the disorder, we consider the two

corresponding cases where p(01) is larger than q(01) and where p(11)

approaches q(O). The results are similar to those obtained in the case of the

false alarm rate and are shown in Figures 3.20 and 3.21 in the form of

performance curves for Page's Test implemented with the sign detector. As

in the previous case, p(01) and q(01) correspond to the same Gauss-Gauss

mixture parameters.
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Figure 3.20. Performance Curves for the Sign Detector
p(Oo) = 0.15 q(Oo) = 0.85
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Figure 3.21. Performance Curves for the Sign Detector
p(Oo) = 0.4 q(Oo) = 0.6

E. SUMMARY

In this chapter we have described the problem of the change detection and

of the joint estimation of the change time and the model parameters. Within

this framework, only the problem of the quickest detection has been

investigated by using Page's test. In the parametric framework, the linear

detector and the square law detector were shown to be optimal in the sense of

quickest detection of changes in the mean and variance of Gaussian

observations. In both cases performance measures were derived and shown

to be consistent with the actual results of simulations. A new algorithm for

detecting changes in the spectral energy was implemented based on locally
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optimal testing and shown to be consistent with the analytical performance

results obtained for this test. The bias of the test was shown to reflect a

tradeoff between the detector performance and the minimal SNR required for

detection. Finally, the issue of non-parametric detection was investigated by

implementing Page's test with the sign nonlinearity and testing the

performance under Gauss and Gauss-Gauss mixture noise distributions.
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IV. BROWNIAN MOTION APPROXIMATION TO CUMSUM

PROCEDURES

A. INTRODUCTION

In sequential analysis additional simplification results from

approximating sums of independent random variables i=xi in discrete time

by a Brownian mniiv. process (B(t), t > 0 in continuous time. Moreover, for

cases where the observations do not form a Gaussian process, the discrete

time process can be approximated by a Brownian motion process which is

Gaussian. For further discussion on this subject see Reynolds (Reynolds,

1975).

To understand the motivation of the use of the Brownian motion process

as a continuous approximation to the random walk (which describes the

cumsum procedures), let X1 , x 2, ... be independent and normally distributed

with mean pi and unit variance. If (B(t), t > 01 is a Brownian motion with

drift M, then Sn = lxi and B(n), n = 0, 1, ... have the same joint distribution.

The analogy is clear: Brownian motion is an interpolation of the discrete

time random walk Sn which preserves the Gaussian distributions to the

extent that a random walk process is approximately normally distributed for

large n. Thus, the Brownian motion process may be used as an asymptotic

approximation to a large class of random walks and hence of log-likelihood

ratios. A good reference for a detailed discussion of this point is Siegmund

(Siegmund, 1985). This chapter concentrates primarily on Brownian motion

approximations to cumsum procedures (specifically the Page test). A
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continuous Brownian motion process IB(t), t > 0) is used as an approximation

to cumulative sums ,(g(x) ± k) which form Page's test. The original problem

of detecting a disorder as described in Chapter II, is now modified in the sense

that it can be viewed as a shift in the drift of a Brownian motion

approximating a cumsum procedure.

1. Problem Statement

Let v be the time of shift and let u > 0 be the amount of shift in the

drift of a standard Brownian motion (B(t), t > 0), B(0) = 0. Consider the

observation process

W(t) = /i(t-v)+ + B(t), g1 > 0.

Thus the observation process is a Brownian process with drift 0 up to

the point of shift v, and p after that.

The Page test applied to Brownian motion is defined as follows: stop

at the smallest t for which the one-sided test with boundaries 0 anc a stops.

The test is repeated if the lower boundary 0 is reached before a. Define the

stopping role to be as

N = infIt: S(t) > a)

where

S(t) = (W(t) + kt) - min (W(s) + ks)
Os!t

for detecting a one-sided positive shift in a drift and

S(t) = max (W(s) + ks) - (W(t) + kt)
Os<t
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for detecting a one-sided negative shift in a drift. The variable k is the

reference value or the bias of the test. (Recall the fact from Chapter II that it is

advantageous to bias the test). Hence, this procedure has two degrees of

freedom, k and a to achieve a given desired performance.

2. Organization of this Chapter

The primary goal of this chapter is to analyze the performance of the

Page test using the Brownian motion approximation, namely, the evaluation

of the Average Run Length (ARL) function under the disorder (Delay) and

'.ndh-r no disorder hypothesis (mean time between false alarms). These

approximations will be compared with the results obtained in Chapter MI, and

a new error (bias) term which enables the "training" of the Brownian motion

parameters (drift and variance) and Page's test parameters (k and a) will be

presented.

In Section B, general theory about diffusion processes and the related

stopping time problems is presented. The first threshold crossing time and

hitting probabilities are shown to be reduced to solving 2nd order differential

equations. The relation to the Page test is introduced and a new bias term

which enables the comparison of the accuracy of the calculation is presented.

Section C deals with the approximation to the ARL functions of the

cumsum procedure and an explicit form for the bias is calculated.

Simulation results are presented in Section D and compared to

simulation results presented in Chapter III. Also, a new error (bias) term

which enables the "training" of the Brownian motion parameters and Page's

test parameters is introduced.

A short summary is presented in Section E.
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B. GENERAL THEORY ABOUT DIFFUSION PROCESSES AND RELATED

STOPPING TIME PROBLEMS

In this section general properties of diffusion processes will be presented.

It will be shown that many functionals, including the first threshold crossing

time and associated probabilities, boundary behavior properties and stationary

distributions of cumsum procedures, can be approximated by using one-

dimensional diffusions.

1. General Description and Definitions

Definition (Karlin and Taylor, 1981). A continuous time parameter

stochastic process which possesses the (strong) Markov property and for

which the sample paths X(t) are (almost always) continuous functions of t is

called a diffusion process.

Consider a diffusion process {X(t), t > 0) whose state-space is an

interval I with endpoints I < r. Such a process is said to be regular if starting

from any point in the interior of I, any other point in the interior of I may be

reached with non-zero probability. Henceforth, without further mention, we

shall consider only regular diffusion processes.

Dynkin Condition (Karlin and Taylor, 1981): A sufficient condition

for a standard process X(t) to be a diffusion pro,-'s is the Dynkin condition:

limlprllX(t + h) - X(t)l> ejx~t) = x} = 0 (4-1)
h1,0 h

for all x in I.

This relation asserts that large displacements of order exceeding a

fixed E, are very unlikely over sufficiently small time intervals. This is in fact
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a formalization of the property that the sample paths of the process are

continuous.

All diffusion processes are characterized by the mean and the

variance of the infinitesimal increments. Let AX(t) be the increment in the

process accrued over a time interval of length h, (i.e., AX(t) = X(t+h)-X(t)),

then

liml EAX(tX(t) = x} = 1(x,t)
h1,0 h

and (4-2)

£i fAAA~t)JXl~ti = xj= o-2(x, t.
h40 h L

The functions p(x,t) and o2(x,t) are called the drift and diffusion

parameters, respectively. In the time homogeneous case, the functions P(x,t)

= ji(x) and o2(x,t) = o2(x) are both independent of t.

A Brownian motion process (sometimes called the Wiener process) is

a regular process on the state-space I with parameters p(x) = 0 and o2(x) = c-

for all x. Adding a trend put to the Brownian motion B(t) produces a

Brownian motion with drift B(t) + pt. In this case, the drift parameter is P,

while the diffusion parameter remains o2 .

The Brownian motion process {B(t), t > 01 has the following

properties:

* B(0) = 0.

{B(t), t > 0) has stationary and independent increments.

* for every t> 0, B(t) is normally distributed with mean 0 and variance c2t.
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When c = 1, the process is called the Standard Brownian motion. Notice that

any Brownian motion can be converted to the standard process by scaling via

B(t)/c.

The behavior of the diffusion process Xt = {X(t), t > 0) can be modeled

by nonlinear stochastic differential equations of the form

dXt = (Xt,t)dt + o(Xt, t)dBt, t > 0

with initial condition X 0 , where u and or are the drift and diffusion

parameters as defined by (4-2) and where {Bt, t > 0) is a standard Brownian

motion. Thus, dBt has the interpretation as a "white" noise driver. This

notation is shorthand for the integral equation

t t
Xt= X0 + Jt~p(X,,s)ds + J,)a(X.,,s)dBs.

This integral representation of a diffusion process demonstrates the Markov

property of the diffusion. That is, given Xs, for each s > 0 {Xt, t > s) and

{Xt, 0 < t < s) are independent. This property is easy to see since for any t _> s 2!

0, we can write
t " t ( u

xt = XS + fsu(Xu,u)du + fta(Xufu)dBu.

This equation indicates that {Xt, t > s) can be constructed completely from Xs

and {Bu,t - u >_ s). Thus, with Xs fixed, {Xt, t > s) is generated independently of

(Xt, t < s} since (Bt - Bs, t > s) is independent of all the past.

The following theorem determines the parameters of Y(t) = g[X(t)],

where X(t) is a regular diffusion process.

Theorem (Karlin and Taylor, 1981): Let (X(t), t > 01 be a regular diffusion

process with parameters u(x) and 2(x) whose state-space is defined on I = (l,r).
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Let g be a strictly monotone function on I with continuous second derivative

g"(x) for I < x < r. Then Y(t) = g[X(t)] defines a regular diffusion process on I

with the parameters

P y(y) = ! (x)g"(x) + P (x).- g'"(x)
2

ay2(y) = a2(x).[g'(x)]2 . (4-3)

2. Stopping Time Functionals of Diffusion Processes

In this section we analyze stopping time problems using properties of

diffusion processes. It is assumed that {X (t), t > 0) is a regular, time

homogeneous diffusion process. Let a and b be fixed, subject to I < b < a < r,

and let T(z) = T. be the hitting time of z defined by

Z f ifX(t) * z Vt > 0

S= inft O;X(t)= z} otherwise.

We use the notation

T* = Ta,b = T(a,b) = min{T(a),T(b)}

to denote the first time X(t) = a or X(t) = b. For processes starting at X(O) = x in

(a,b), this is the same as the exit time of the interval (a,b):

T(a,b) = inf{t - 0;X(t) (a,b)}, X(O) = x E (a,b).

a. Stopping Time Related Problems

This section concentrates on three problems related to the first

hitting time of a diffusion which are relevant in the case of the cumsum

procedure.
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Problem 1. Find

u(x) = Pr{T(a) < T(bfX(O)= x} b < x < a (4-4)

that is, the probability that the process reaches a before b.

Problem 2. Find

v(x)=E{T*IX(O)=x} b<x<a (4-5)

which is the mean time to reach either a or b.

Problem 3. For a bounded and continuous function g, find

w(x) = E{f g(X(s))dsjX(O) = x b < x < a. (4-6)

Since the sample paths of the diffusion processes are continuous (4-1), the

integral A f J* g(X(s))ds is defined. If g(x) represents a cost rate incurred

whenever the process is in state x, then A would be the total cost up to the

time when either a or b was first reached. If g(x) = 1 for all x, then A = T*, the

time to reach a or b, so that problem 2 can be considered as a special case of

problem 3.

b. Solutions of the Stopping Time Problems

A convenient reference for the solution of these three problems

is Karlin and Taylor (1981, Ch. 15), where it is shown that u(x), v(x), and w(x)

possess two bounded derivatives for b < x < a, and that these functions satisfy

the following differential equations:

Solution Equation for Problem 1

A u+ 2(x) d u  for b<x<a, u(b)=O,u(a)=1. (4-7)
dx 2 dx 2
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Solution Equation for Problem 2

=12 (X) v for b<x<a, v(b)=v(a)=0. (4-8)
dx 2 d

Solution Equation for Problem 3

-g(x) =/(x) d+ -2(X) 2w for b<x<a, w(b)=w(a)= 0. (4-9)
dx 2 d

In order to solve these three problems we need to use several new functions.

Let

SW)=dexp 2()dil for l<x<r (4-10)

-f a-2( ) -j

be the scale density of the process. The use of an indefinite integral will

become clear later. Next, the scale function of the process is defined by

S(x) = fXs(r)dr7 (4-11)

and finally, the speed density is given by

m(x)=1/[a2(x).s(x)I for l<x<r.

Using these definitions, the solution for Problem 1, namely the probability of

hitting a before b is given by:

u (x) - S(b) b < x < a. (4-12)
5(a) - 5(b)

The solution for Problem 3 is given as
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w(x) = 2{u(x). J a[5(a.) - S(4)] m(4)g(4)d4

+[1- u(x)]J[S(4) - 5(b)] m()g(4)d.} (4-13)

The solution for Problem 2 is obtained by letting g(4) - 1.

Notice that the solution for w(x) can also be written as:

w(x) = aG(x, 4)g(4)d4, (4-14)

where:

[[S(x)- S(b)][S(a) - S(4)] 1bx<<a

(x,4) r2 S(a)-S(b) 2()s() bx a(4-15)
2 [S(a)- S(x)][S() -S(b)] 1 b(4 1x5a.

S(a)- S(b) -2(g)s(g)

The function G(x,4) is called the Green function of the process on the interval

[b,a].

Determining the mean time prior to T* that the process spends in

the interval [ , +A) is equivalent to evaluating

w(x) = E{fT g(s))dsjX(O) = x}

for

9(x) = 1 <<+

otherwise

and following the format of (4-14), this is

w(x) = v(x) = E{ATIX(O)= x} (x, i)d17 (4-16)
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we see from (4-16) that G(x, )d measures the mean time AT prior to T* that

the process spends in the infinitesimal interval [ , + d ] given by X(0) = x.

c. Some Examples of Functional Calculations

Given the solutions (4-12), (4-13) and (4-16), some cases of

interest will be examined.

(1) Standard Brownian Motion. Let {X(t), t > 0} be a standard

Brownian motion with parameters U(x) - 0, a 2(x) 1. Then,

s(x) = exp{21x d} 1.

The scale measure is given by

S(X) = x.

Thus, u(x), the probability of hitting a prior to b, with initial state x, is

x-b
u(X) -ab b <x <a. (4-17)

The speed density in this case is

1

and the Green function (4-15) for the interval [b,a] is

(a -b)G~x,) =2(4 -b)(a - x), b: < :5 x < a.

(a -b) '

Direct calculation from (4-14) gives
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v(x) = E{TaObX(O) = x1 = J:aG(x, 4)d4

=.(x-b)(a-x) b:_x:5a. (4-18)

Remark. A process {X(t) whose scale function is linear S(x) = x, is said to be of

natural or canonical scale since the hitting probability (4-17) is proportional to

actual distances.

Notice that the scale function can be used to rescale the state-

space (l,r) in terms of probabilities of achieving various levels, and this use

motivates the name. If a point x0 is fixed as the origin, we can easily

determine a new scale function by performing a translation, causing S(xo) = 0

and form a process Y(t) = S(X(t)) on the interval (S(l), S(r)). Since S is strictly

monotone and twice differentiable, the use of Theorem (4-3) establishes the

infinitesimal parameters of the process (Y(t)):

Puy(y) = 1a 2(x)S '(x) + y (x)S (x)

and

2y(y) = A'2(x).[S'(x)] 2 = o2 (x)sE(x) where y = 5(x).

The scale measure for {Y(t)) process is Sy(y) = y, thus, the use of the scale

function enables one to transform a process to a natural scale.

(2) Brownian Motion with Drift. If {X(t), t _> 0) is Brownian

motion with nonzero drift lA(x) -p and variance o2, then:

s(x) = exp(-2px/a 2) (4-19)

S(x) = A exp(-2px/ca 2) + B (A and B constants),
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and

u(x) = e-2 a 2 _ e_2/a2 b 5 x 5 a. (4-20)
e-2palaC2 _ -2la

3. Instantaneous Return Processes and the Relation to Page's Cumsum

Procedure

This section introduces a certain boundary behavior of the diffusion

process that defines an Instantaneous Return process. This process is shown

to describe any cumsum procedure and forms the basis for the approximated

ARL function. It enables also the derivation of a new bias term which is used

to evaluate the accuracy of the approximation.

a. Instantaneous Return Processes (Karlin and Taylor, 1981)

Consider a diffusion IX (t), t > 0) on the state-space I = (l,r) and let

I < b < a < r. A return process Z(t) relative to [b, a] shown in Figure 4.1 and is

defined as follows: Starting at a point xO in (b, a), the process is returned

instantaneously to x0 whenever b or a is reached. After such a return, the

subsequent process behaves just like X(t). This process is repeated at each

attainment of level b or a.

The resulting process Z(t) consists of recurrent cycles of random

time duration T 1, T 2, T3, ..., where Ti are independently and identically

distributed, with the same distribution as Ta,b = min{Ta, Tb, the first exit time

from the interval (b, a), starting from xo (stationary process). It follows from

(4-16) that

E{Ti X(O)= Xo}= G(xo,)d (4-21)
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where G(xo, ) is the Green function of the process X(t) relative to the state-

space (ba).

Let P(t,y) be the density function of Z(t). Thus,

P(t,y)dy = Pr{y _Z (t) _ y + dylZ(O) = x0}.

Define the limiting density of Z(t) as

a(ylx) = lim P(t,y). (4- 22)
t-*

To do so, consider an interval [yi,y2 such that b < yI < Y2 < a and define the

indicator process {1(t), t > 0) by

1t = if yI<Z(t)<y2

10 otherwise.

from Figure 4.1, we see that

Pr{I(t) = 1} = E{I(t)} = YyY2 P(t,y)dy. (4- 23)

Recalling the renewal theorem (Ross, 1989) (Feller, 1971), we can deduce that

urn PrIl(t) = =1 E{time spent in (Y1,Y2) in a cycleZ(0) = xO}
t-40 Eftime duration of a cyclejZ(0) =xO}

f1 2 G(xo, )d$
= a G(4-24)fb'G(/o, 4)dl-

Using (4-23) we get
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lim Pr{1(t) = 11 =im JY2 p(ty)dy
t---,ot--- Y

_ JY 2 G(x0, )d~

J:G(x, 4)d4

Since this holds for every Y1, Y2 E (a, b), it follows that

a(yixo) = lir P(t,y)
t-400

= G(xO,y) b < y < a. (4-25)

J1'G(x, 4)d

The stationary density of the instantaneous return process a(y I x0), can be

interpreted as the proportion of the mean time spent at state y in one cvcle Ti.

I.W

Y1

X0- -T 
i - - - - -

Figure 4.1. Instantaneous Return Process
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b. Relation to the Cumsum Procedure

Let N denote the stopping rule based on the cumsum test with

reference value k stopping boundary a and restarting boundary b,

N = inf{t:X(t) > a} (4-26)

where

X(t) = (W(t)+kt)- nrin (W(s) + ks)

is based on the observation process

W(t) = y(t - v) + + B(t), Ai > 0 (4 -27)

where (x) = max(O,x), and ji defines the amount of shift in the drift of a

standard Brownian motion B(t) with B(O) = 0, at the point of shift v. The

reference value k is chosen to minimize the Delay for detection.

Before the shift occurs, the reference value guarantees that the

test will hit the lower boundary and cause a restart. Each restart will force the

process to return to the initial state xO and start once again, thus, the restart

process can be considered as causing an instantaneous return process.

Notice that before the shift occurs, the process W(t ) is a Brownian

motion with drift k, while after the shift (change) in drift occurs, W(t ) is a

Brownian motion with drift p+k. Let L be the number of restarts before the

shift, and let (Ni} be the corresponding run length intervals of the test until

the shift is detected (i = 1, ... , L+I). Hereby, we follow the analysis as given by

Srivastava and Wu (Srivastava and Wu, 1990).

L L+I
jNi<v< _Ni.
i=1 i=1
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The average delay time is given by
[L+1

D(t)= Et{Ni-t
Si=1

where E{. denotes the expectation when the shift occurs at a fixed time t.

The asymptotic average delay time or the stationary average run length is

defined as

ARL = lir D(t). (4- 28)
t---ao

We denote ARLm(xO) as the Average Run Length of the diffusion X(t) when

the shift in the mean is Mu at the initial state XO = xO. Similarly,

ARLO(O) a ARL0 denotes the ARL under no change, namely, the ARL when

there is no shift in the drift and the initial state is zero. Hence, ARL0 is the

mean time between false alarms (with initial state zero).

Under our assumptions, the instantaneous return process caused

by the restart process will be at some stationary state, say y, when the shift

occurs. Denote the stationary density of this state y as a(y I xO). Figure 4.2 is the

appropriate picture to guide the analysis. Suppose that we use this state y as a

new initial state for the detecting process with shifted mean to find ARL"(y).

Thus, the stationary average delay time (4-28) is given by

ARL (xo) = f ARLM(y)x(yIxo)dy. (4-29)

Notice that ARL M(xo) can be interpreted in two ways. First as a weighted

average of ARLs under disorder over the set of all possible initial states y

taking into account the effect of the distribution of run length before the

disorder. Second, time-wise, ARL p(xo) takes the weighted average of all
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possible places of shift (since for each realization of X(t), each different y is

related to a different shift time), conditioned that the shift occurred. Since

ARLu(y) is a decreasing function of y, we obtain that

X(t)

change point - -

X0 t- places of
v shift

N L1 - - N L + N L+1

Figure 4.2. The Cumsum Process X(t) as an Instantaneous Return Process

ARLM (xO) < ARL (y).

Since the location of the change point v is not known inside the last run

length interval NL+1, the approximated ARL should take into account all the

possible places of shift within the last run length interval, thus, the

approximated stationary ARL under change (Delay) is obtained by (4-28) and

(4-29) while the bias of the approximation can be obtained by

bias(x0 ,p) = ARL(x 0)- ARL, (xo). (4-30)

Hence, (4-30) "measures" the effect of the point of shift in the limiting

situation for the cumsum procedure. In the following section, we will use
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the theory of this section to derive the diffusion approximation to ARL0,

ARLu(y) and ARL for the cumsum procedure. These approximations will be

used to compare and measure the accuracy of the theoretical results derived

in Chapters II and III.

C. BROWNIAN APPROXIMATIONS TO THE ARL FUNCTIONS OF THE

CUMSUM PROCEDURES

The approximation to the run length functions for the one-sided Page test

for an increase in the drift, will be obtained with the aid of the following two

lemmas. Before presenting the lemmas, one key principle of the diffusion

process which is relevant in our case needs to be addressed. This will be done

in the following section.

1. The Reflection Principle (Karlin and Taylor, 1968)

A Brownian motion with a reflecting boundary at zero behaves as a

standard Brownian motion in the interior of its domain (0,-). However,

when it reaches its zero boundary, then the sample path returns to the

interior in a manner of that of a light wave reflection from a mirror. In

general, consider (Z(t), t > 0) with Z(0) = 0 and Z(t) > a (a > 0). Since Z (t) is

continuous and Z(0) = 0, there exists a random time r at which Z(t) firsts

attains the value a. For t > Tr, we reflect Z(t) about the line z = a to obtain

Z(t) for t < r
X(t) = (4-31)

a -[Z(t) - a] fort > T

(see Figure (4.3). Note that X(t) < a since Z(T) > a. Because the probability law

of the path for t < r, given X(r) = a, is symmetrical with respect to the values
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x > a and x < a and independent of the history prior to time r, the reflection

argument displays for every sample path -.'ith Z(T) > a, two sample paths X(t)

and Z(t) with the same probability of occurrence.

IZ(t)

I Xt - Reflectd process

0-

0 T T

Figure 4.3. The Reflection Principle about Line a

The following lemma establishes the fact that the Page cumsum procedure

(X(t) given by (4.26)) with boundaries (0,a) results in a Brownian motion with

an absorbing barrier at a and a reflecting barrier at 0. The second lemma uses

the fact that the reflecting barrier is at 0 to obtain the result that before the

disorder, the process X(t) with a reflecting barrier at 0, can be viewed as the

absolute value process (set a = 0 in (4-31)). Thus, the reflecting boundary

phenomenon is equivalent to setting X(t) = I Z(t) I.

Lemma 1 (Bagshaw and Johnson, 1975)

Before the shift occurs, the process X(t) given by (4-26), has the same

probability law as a Brownian motion W(t) given by (4-27) with drift k and a

reflecting barrier at 0. El
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Lemma 1 applies to any diffusion type process. It states that before the

shift occurs, X(t) = (W(t) + kt) - min0 , 5 t(W(s) + ks) and I W(t) I have the

same distribution. Moreover, the distribution of the first passage time of X(t)

to a can be determined by finding the distribution of the first passage time of a

process with a reflecting barrier at zero to an absorbing barrier at a. Thus, it is

clear that after the shift occurs, X(t) and I W(t) I do not have the same

distribution (since a is an absorbing barrier).

Using the results of lemma 1, two alternative methods can be used to

get the desired approximation for the ARL function. The following two

subsections describe these methods.

2. Direct Calculation of the ARL Function via the Functional (4-8)

Let {X(t)} be a Brownian motion on I = [0,-) with driftua and variance

parameter a2, where 0 is a reflecting boundary. Let Ta be the hitting time to

level a > 0, and set v(x) = E(Ta I X(0) = x} for 0 < x < a. Then, v(x) is obtained by

solving the differential equation (4-8) and is given by (Bagshaw and Johnson,

1975) and (Karlin and Taylor, 1981):

v(x)= (4-32)

a2 -x 2

where

5= 3/ 2
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Recall that before the shift occurs, X(t) is a Brownian motion with drift k, and

since Xo = 0 (Page's cumsum test), the ARL before the shift is obtained from

(4-32) as follows by setting p = k

'- (-e k2~) k0

ARL0 = ARLo(O) = (4- 33)

a2
- k-0

where
y = k / y2 .

After the shift, X(t) is a Brownian motion with drift u+k, and since the initial

state is given by Xo = y (see Figure 4.2), the ARL after the shift is given by

ARLA(y) = (1 + k)[a y- " Y (*y -e-2]*a Oya (4-34)

where

r*=(p+k)/cy

3. Calculation of the ARL and ARL Functions using the Green

Function

Lemma 1 established the result that before the shift occurs, X(t) has

the same probability law as a Brownian motion with drift k and a reflecting

boundary 0. The following lemma useF this result to transform the reflected

Brownian motion into another diffusion process, for which we can use

theory established in the last section, namely, the use of the Green function to

derive the ARL function.
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Lemma 2 (Karlin and Taylor, 1968)

Let X(t) be a Brownian motion with reference value k (bias) as defined in

(4-26). Then, before the shift occurs, X(t) has the same probability law as the

process I17V(t)I, where VlV(t) is a Brownian motion with parameters

Ljti (z) = (sign z) k

o (z) = aj(IzI) = constant.

for all z in the state-space I. 0

Thus, the reflecting barrier phenomenon is equivalent to setting

X(t) = JV;(t , where l,(t) is a Brownian motion on (-a, a) having parameters

given by Lemma 2. Hence, the stopping rule (4-26) can be modified as

N = inf{t: I V'(t)I > a)

which is the first exit time from the interval (-a, a). Thus, the reflected

Brownian motion which describes Page's cumsum procedure is transformed

to a nonreflected Brownian motion to which we can apply the results

obtained for regular diffusions.

Recall the definition of the Green function given by (4-15). Then, for

the process X(t) in terms of the process V'(t), the scale density function (4-10)

is given by

s(z) = e -a < z a.

= e-21zlk/a
2
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Since the initial value in our case (Page's Procedure) is x = 0, we get the Green

function for the cumsum procedure (with b =--a) for the no change

hypothesis:

J0 e-~ 21ua2du - a e-2lulkla du
2[- e21uk/J 2 Z -a:5 0: z 5 a

2] 
c 2 - e 2 z l k /

G(0,z) =
fae-21ulk/l.2du -z e_21ulk/o.2du

2J 2 -a 21l/y -a:5z:5O:5a
[a &21ulkla du] 62 .

Now define r= k/ 2

e2 J-a e du Jmax(z,O)e , <zdu
- 2 2a e-2,ulzdu

e2 1 z ey . rda

= l zl a e-2uydu.

1 - e ( z -~
- e-a~z5a. (4-35)

2k

This result agrees with the result shown by Srivastava and Wu (Srivastava

and Wu, 1990) except that by (4-35) it is assumed that the process has a general

diffusion parameter o2 . Hence, from (4-16), ARL0 is given by

ARLO = J'aG(Oz)dz
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and a direct calculation yields the same result as given by (4-33). Using these

results, we get from (4-25) the stationary density of the process X(t) defined by

(4-26) is given by (y is a stationary state of the process X(t))

a(ylx = O) a G(O,y) O_5y:5a
foG(0, y)dy

1-e - 2y(a-y)

1e - 2 ay

2y

Thus, using (4-34), ARL is obtained as

ARLM(0) = a ARL (y), a(ylx = Oy

1_a [I-e-2 r(a-y) ][( - y)2y .e 2 y*y + e_2y*a dy

2[a 1- e 1Y (p +k)*

a2_ ) -e-2W +e 2r*a-l e2(y*-y)a+2(y*-y)a-I

2 y2  2 y 2y* 2 (y *-)j
(y '/1)(p + k)[e - 2 7 + 2)v-1]

(4-36)

where:

y = k / or2  (before shift)

= (, + k) / c 2  (after shift).
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Having calculated ARL,(y) and ARL A(0) yields an analytical approximation

to the bias as defined in (4-30).

D. RESULTS

Using equations (4-33) and (4-36) for calculating ARL0 and ARL( 0)

respectively, the error (bias) term has been calculated via equation (4-30):

bias (0,ju) = ARLu(0) - ARL u(O).

For the symmetric case k = -y/2, y= -4/2 d 2 (before change) and M7* = 2

(after change). The reason for this assumption is that it has been shown

(Bagshaw and Johnson, 1975) that this is the optimal reference value if the

objective is to minimize the ARL function.

Figure 4.4 illustrates the bias term as a function of the drift. For lower

values of the reference value k the bias term is in the order of about 10

samples.

Figure 4.5 illustrates the effect of the initial value on the delay of the

cumsum procedure for an initial value of y = 5.

Figure 4.6 illustrates the ARL function for both the delay and the mean

time between false alarms, as obtained by using the Brownian motion

approximations.
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Drift Analysis, Symetric case k=-Mu/2
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50~- '
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Figure 4.4. The Bias Term as a Function of the Drift.
Symmetric Case k = -p12
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Drift Analysis, Symetric case k= -Mu/2, y-= 5

60"

30-

ARLW(y)
10-

W2 0.4 0.6 0.8 1 1.2

Drift

Figure 4.5. The Effect of the Initial Point y on the Delay
Symmetric Case k = -,/2
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Drift Analysis, Symetric case k= -Mu/2 -

L-
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Figure 4.6. The ARL0 (O) and ARL,(O) Functions as a Function of the Drift
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E SUMMARY

In this chapter an additional viewpoint to the analysis of cumsum

procedures was introduced by using the Brownian motion approximations

for stopping times. The problem of determining the probability, the average,

and some general cost function of the stopping time was shown to be reduced

to a closed form.

Next, the behavior of the diffusion process was investigated for two cases.

In the first case, the cumsum test was shown to be modeled as a diffusion

instantaneous return process which enabled the derivation of the stationary

density of the diffusion, thus representing the density of the cumsum process.

In the second case, the behavior of the diffusion process near a reflecting

boundary was investigated and shown to be the key to determining the

approximation of the ARL function for cumsum procedures. Finally, a new

error (bias) term was developed allowing one to predict ihe average error in

the delay for detection. Also, a new procedure of "tuning" th- diffusion

parameters to a given problem was introduced. The drift parameter was

shown (as expected) to be the most influential parameter for the

approximation.
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V. QUICKEST DISORDER DETECTION METHODS: THE BAYESIAN

FRAMEWORK

A. INTRODUCTION

Consider once again the disorder formulation of (1-2), where the

observations x1, x2, ... are i.i.d. random variables, such that up to a certain time

v > 1, x1, ..., xv-1 are identically distributed with distribution Po(x), while xv,

Xv+l, ..., are identically distributed with another distribution Pl(x), where Po(x)

and Pl(x) do not depend on v. In the non-Bayesian formulation the random

time v is considered as a parameter, and this formulation leads to classical

problems of hypothesis testing. By the Bayesian approach, the parameter v is

considered as a random variable with a certain distribution. As in the non-

Bayesian approach, we shall be concerned mainly with the problem of how to

use the observations to determine as quickly as possible the time v, or the

"disorder" situation, for a given false alarm ratio. Shiryayev (Shiryayev, 1978)

and Roberts (Roberts, 1966) independently proposed an approach similar to

cumsum procedures. We shall refer only to Shiryayev and use his notation.

Shiryayev solved the problem of quickest disorder detection subject to a

constraint on the probability of false alarms Pr{N < v) < a for all v (where N is

the stopping time) in the Bayesian framework.

The following section gives a short presentation of his work and some

important results which will be used next to establish new results.

This chapter is organized as follows: In Section B we introduce

Shiryayev's results which are relevant to our case, and form the basic
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underlying observation process which is used to solve the Bayes version of

the cumsum procedures. Section C presents a new approach to evaluate the

performance of the Bayes version for cumsum procedures. The analysis is

based on the Shiryayev optimal Bayes solution (Shiryayev, 1978) and the

modification of the double procedure algorithm of Assaf and Ritov (Assaf

and Ritov, 1988) and uses Brownian motion approximations to solve the

Bayes problem.

Finally, Section D contains a short summary of the results.

B. BAYESIAN APPROACH TO CUMSUM PROCEDURES APPROXIMATED

BY BROWNIAN MOTION

1. Problem Formulation

As mentioned in the introduction, we will follow the work done by

Shiryayev (Shiryayev, 1978), thereby, a new derivation of the performance of

the cumsum procedure will be introduced in the Bayesian framework, using

some of Shiryavev's restlts. The problem will be presented in terms of a

Brownian motion process which approximates the cumsum behavior (see

Chapter IV).

Consider a Brownian motion process (W(t), t >_ 0}, which during the

time interval [O,v] has zero drift, and during (v,.) has drift y > 0, where v! <

and p are unknown parameters. The process W(t) satisfies the stochastic

differential equation

dW t =p (t - v) dt + adBt, w0 = 0
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where (a) = max(Oa) and B(t) is a standard Brownian motion with B(O) = 0.

In other words, the structure of the observed process is

aBt  t< V
Wt={ tv (5-1)

where v is considered as the (unknown) "disorder" time in which a disorder

takes place in the observed process, and the local drift shifts from zero to p.

In what follows we assume that v is a non negative random variable with

a priori distribution

Pr{ v = 0} = Po, Pr{v > t~ v > 0} = e- At  (5-2)

where p0 and ,A are known constants. Let N be the stopping variable which

defines a certain class of detection rules 0. The class 0 of those solution rules

for which N E 0 is finite with probability one, is denoted by A.

For every 0 E A, let

R(4,po) = Pr{N < v} + c. E{(N - v)+}

be the risk consisting of the probability of a false alarm Pr{N _ v) and the

average delay of detecting the disorder correctly, E{N-vIN > v}. The cost of

one observation is assumed to be c > 0. Thus, the cost of the false alarm

compared to the cost of the delay in detection is determined by the value of c.

Define

p(N*)= inf R(O,po). (5-3)
0CA

where N* is the optimum stopping rule which minimizes the cost function.

Hence, the problem can be slightly changed, i.e., to find among all the rules
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= e A with a given probability of false alarm a = Pr{N < v), a rule N*e *
which guarantees the minimum of the mean time of delay, if the detection

was correctly done, i.e., such that

D(a)= inf E{N'-N*> v} (5-4)
*EA

where N* is called the Bayes time. Thus, the Bayes problem of quickest

detection can be formulated in the following way:

For a given false alarm probability a = Pr[N < v, find the observation

method with the minimum average delay, (which minimizes the risk (5-3)).

The following theorem establishes the optimum observation method in the

class of decision functions 0 e A.

2. The Optimum Bayes Solution

Theorem (Shiryayev, 1978): For a given false alarm probability

Pr(N < v) <_ a < 1, the optimum observation method for the problem of

minimizing the average delay as defined by (5-4) consists of observing the

process

Zt = Pr{v! tWs, s!< t} (5-5)

with the initial condition Z 0 = p0 < 1 and deciding that a disorder is present

when a threshold a < 1 is first attained. Hence the stopping rule is given by

N=inf(t: t O, Zt>-a}

where a = 1-a. The process Zt satisfies the following differential equation:

dZt:=10- Zt)dt+ Z,(1-Z)dBt Zo:=Z. (5-)
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For the proof of optimality of N, see Shiryayev (Shiryayev, 1978,

Ch. 4). The theorem gives two important results: First, the structure of

optimal Bayes time N* solutions consists of observing the current posteriori

probability that the change has already occurred. The process Wt is observed

until the process Zt reaches (at time N*) for the first time a certain level a.

Second, Zt is a diffusion process with time homogeneous coefficients given by

P*(Z) = A (1- Z)

a '2 (z)= [(. / a "). z(1 z)] 2  (5- 7)

where .s and a are the time homogeneous coefficients of the observation

process (5-1). Notice that when A -- 0, i.e., when the mean time at which the

disorder occurs E~v) =A - 1 tends to infinity, hence y(z) = 0 and the diffusion Zt

has a zero drift. Notice also that in this case it is natural to assume that a -* 1.

This situation indicates that the disorder appears on the background of an

established stationary regime. Shiryayev solved the problem of quickest

detection under this assumption. For a given mean time between false

alarms T, under the optimal method ot observation, the mean delay time

D(T) is given by

D(T) =E{N- vN t v}

1 {log(y T)- 1 - C} (5-8)

Y

where

7 = 2 /12a2

C = 0.577...= Euler constant
T=( 1- a)/
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Notice that the assumption that the disorder is preceded by a long process of

observation in which a stationary regime is established implies that A. -) 0,

a -4 1, but such that T = (1-a)/X is fixed.

The results established in this section, in particular the diffusion type

behavior of the optimal observation method, namely, the posterior

probability of change, motivates a new formulation of the quickest detection

of cumsum procedures and will be presented in the next section. The analysis

will make use of the theory of diffusion processes established in Chapter IV.

C. THE BAYES SOLUTION TO CUMSUM PROCEDURES

The framework set by Shiryayev enables a convenient formulation of

quickest detection problem for cumsum in the Bayesian framework. Hereby,

there analysis of Shiryayev (Shiryayev, 1978) and Assaf and Ritov (Assaf and

Ritov, 1988) is modified to cbtain a new performance analysis of the optimal

Bayesian stopping time solution for cumsum procedures.

1. Problem Formulation

The behavior of cumsum procedures as processes which exhibit

renewal properties (Chapter II) and which can be described by instantaneous

return processes (Chapter IV) establishes the observation th!f for a general

cumsum procedure, the process of local minima (or local maxima) results in

regimes (i.e. periods between successive local minima points) in which the

diffusion approximation has a certain drift. The disorder occurs in one of the

regimes, where the diffusion approximation will exhibit a change in the drift.

The problem of quickest detection is concerned with the minimization of the

average number of bad regimes which are mistakenly accepted during one
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cycle, i.e., between two successive alarms. Notice that if the disorder occurred

in the last regime in the cycle, then the average delay is given by ARL M(xO) as

defined in (4-29). Let L be the number of regimes in one cycle. Thus, the first

L-1 regimes are accepted, each time the present regime is accepted the test

continues to the next regime, while the last one is rejected and produces the

alarm. Let Xi be the set of observations within the regimes, i.e., X1 denotes the

observation set within regime 1, etc. Assume that the (true) change occurred

in regime v. Thus, X 0, X 1, ..., X, 1 are independently distributed according to

some PO while xv, Xv+l, ..., are independently distributed to some P1.

Assumption 1: Both P0 and P, are the normal distributions with known

means p0 and p1 and common variance dr2.

Assumption 2: It is assumed that the change occurs only between regimes

and not within a regime. This assumption can be justified by the fact that by

using the ladder variable approach it was shown in Chapter II that the process

of local minima reflects the set of time instants which are more likely to be

the change points. Moreover, it was shown (2-33) that the actual number of

regimes within a cycle is geometrically distributed. Following Assumption 2

we establish the last assumption.

Assumption 3: The change regime v has a prior which is geometrically

distributed with a known parameter 0 < p < 1, i.e., Pr{v = n) = p.qnl for n 2! i.

Let L be a stopping time for declaring a change. Let a = Pr(L < v} be the

probability of false alarm and let D = E{L-v) + be the expected number of

regi-nes which are mistakenly accepted in one cycle (i.e., which are

mistakenly identified as regimes containing "no change" information).
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Consider the following version of the optimal problem: find a

stopping time L which minimizes D subject to the constraints a and ARLO(-),

where a is a given probability of false alarm and ARLO(.) is the mean time

between false alarms defined in (4-29)

2. Optimal Bayes Solution

The solution of the optimal Bayes problem is given by (5-5) and is

denoted as the Z process. For any regime, Zt is the "current" posterior

probability that the change has already occurred given the first I regimes.

Zt=Pr{v! jXo,x 1,...,Xt} I = 0,1,2,.... (5-9)

Due to Shiryayev results, (5-9) is defined as the observed process which

behaves like a diffusion process with time homogeneous coefficients given by

p(5-10)

a2(z) = [(Ap / a)z(1 - z)]2 (5-10)

where Ap =

Notice that the underlying model assumes that within a regime the cumsum

behaves like a Brownian motion with drift parameter go or p, and variance

parameter C 2. The corresponding observed process (5-9) has zero drift

parameter due to the fact that it is assumed that the change does not occur

within the regime. Notice that this assumption results in a natural scaled

diffusion whose scale function is linear, S(z) = z.

The observed ZI process is defined on the state-space I = (0,1). Let

0 < b < a < 1. The optimal stopping rule is defined as follows:

accept the present regime and move to the next one whenever Z, < b.
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* continue sampling within the present regime as long as b < Z, < a.

* reject the present regime and declare a disorder as soon as Zt> a.

Thus, the stopping regime is given by

L = inf{t: Ze > a).

The initial value of Z at the first regime is zo = p while a decision to accept a

certain regime and to move to a next one results in an initial condition

1o = b + p( - b). (5-11)

This result is due to the fact that for any regime in the cycle except the last one

the test is terminated at the lower boundary, Zt = b 0 5 !5 L-1. We obtain

(5-11) by using the law of total probability. All the regimes following the first

one have the same probabilistic behavior. Thus, their initial z values are

given by (5-11). See Figure 5.1 for a pictorial illustration.

3. Cumsum Performance Analysis

The goal of this section is to find the relationship between the test

parameters a, b, and p and the delay D and the probability of false alarm a. To

start the analysis we need to find E{L}, the average number of regimes within

a cycle. Note that L is modified geometrically distributed since L is a mixture

of two random variables, the first of which is identically zero and the second

of which is geometric (Assaf and Ritov, 1988). Hence, the probability of

success p should be calculated when the initial value is 20 and the probability

of failure q should be calculated with initial value zo.
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Zn =Priv <n IXO, Xi- .-,Xn}

X0 X, X2  XL

1 - - - - - - - - -- - - - - - - - -

-------------------- ------ ---------

I

b--------- -- -- -- -- - ---- -4---- -- -- -----

No N1  N2  N.

C-

Figure 5.1. The Observed Diffusion Process z(n)

E{LI=q

-Prfz(n) = b

Pr~z(n) = al

-Pr {hitting b before alinitial. regime value = zo}
Pr~hitting a before bjinitial regime value = 11

Recall the results obtained for a general diffusion process Zt for solving for

the probability of hitting the boundary a before b as given by equation (4-4).

The solution is given by (4-12).

u (zo) = Pr(TMa) 5 T(b) I Z (0) = zol b < zo < a,

hence, E[L) can be obtained by
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EL=1-u(z0) (-2
u(Z) (5-12)

Since the observed diffusion Z, has zero drift coefficient within any regime,

the Z process has a natural scale function S(z) = z. Thus, using (4-17) we

obtain

zo-b
u (zo)=a-b b <zo <a

ao-bu (E0)) = a-b b <-f° < a

which results in

E{L} = (a-zo)/(o-b).

Using '0 = b + p(1-b), the expected number of regimes per cycle is given by

E(L} = (a-zo)/p(1-b). (5-13)

Having derived an explicit form for the of average number of

regimes per cycle E{t), enables one to show the relationship between a

(probability of false alarms) and D (delay) with the test parameters a, b, and p.

To compute a, notice that when the observed process

Z, = Pr(v < I I Xo, ..., X1} crosses the upper boundary a and causes an alarm, then

Z, = a or Prfv!t I I Xo, ..., X1) = a, thus it follows that 1-a = a, or

a = 1-a. (5-14)

To compute D = E{L-v), notice that Z, is the expected value, using posterior

information of the indicator function 1(vq) (Shiryayev, 1978), i.e.
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j1 v:5- 1
v~t

hence

PrII(Vv) = IXo,...,Xt} = Pr{v < LXo,...Xj}

Thus,

D= E{L- v}*

L

= EI(v! )jXO,... ,e

E {Z}. (5-15)

We obtain (5-15) which is consistent with Shiryayev's result, but here the

derivation is done in a much simpler way. Since for 0 < ! < L-1 the

Z process terminates by crossing the lower boundary, thus

Z 1 =bfor= 0,...,L-1. Hence,
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-- E{L.E{ze}}

= E{L} b

= (a- zo)b / p(1- b). (5-16)

4. Asymptotic Analysis

In this section we are concerned with the asymptotic analysis of the

delay D as p -4 0. Since 1/p determines the average rate of changes, this

asymptotic analysis will indicate the performance of the optimal algorithm

when the rate of changes is small. Hereby we shall consider the constrained

version of minimizing D subject to given values of Pr{v <_ L} = a and

ARL0 (fo) = T, the regime time.

The analysis starts with computation of the average cycle time E{C)

which is needed to analyze the asymptotic average delay. The diffusion type

behavior of the observed process Z, enables the use of techniques introduced

in Chapter IV to obtain the result for E{C. Finally, we obtain an asymptotic

approximation for the average delay.

a. Calculation of the Mean Cycle Time E(CJ

Figure 5.1 is the appropriate picture to guide the following

analysis. To compute the expected cycle time, E{C), notice that the first regime
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run length in a cycle starts with initial condition z0 , while all the following

regimes start with initial condition ro given by (5-11). Let N1 be the sampling

time of the first regime in a cycle, then E(NI} is the expected time it takes the

diffusion to reach b or a. Similarly, let N be the time needed for the diffusion

starting at f!0 to reach b or a. The total run length of a cycle is given by

C= L1Ni where L is the stopping regime and with N 1, N 2 , ... , independent

and identically distributed like N -. Applying Wald's equation and using

(5-13) we obtain

E{C} = E{NOI+(E{L}-1).E{N}

= E{No}+[(a - zo) / p(1 -b)- lIE{NI. (5-17)

To make the computation simpler we consider the long run

situation, using the simplification zo = -0. In this case (5-17) becomes

E{C} = E{L} E{N}

= [(a - zo) / p(l - b)]. E{N}1

= [(a - z0) /p(1 -b)]o ARLO0(E0). (5-18)

The last result is due to the fact that E{ N } is the average regime time which

is by definition equal to ARLO(0) since within the regime the drift coefficient

is zero.

b. Calculation of ARLo(z)

The observed diffusion Z, is in natural scale since the scale

measure is linear (see 4-17), i.e.,

S(z) = z.
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Using the expression of the variance coefficient (5-7) we obtain from (4-15)

the Green function for the observed diffusion Zt

2 ( z-bXa- 4) bz<5<a

(AP / a)2(a-b) 2 (1-) 2

2 (4 -b)(a -z) b< < 5z:!a.

(AP / a) 2 (a- b) 2(1- _) 2

The Average Run Length ARLo(z) is given

(Assaf and Ritov, 1988),

ARLO (z) = E NI1

(4u / 1 - a(iz} (- z) (i( -2bgz1b)

= (,Au / 2a)2(a-b) z-l-ajz +(- -2 gi--

(5-19)

For the limiting situation

lir O = li=r {b + p(l - b)} -4 b
p-4O p--O

it follows that in this situation ARL0(b) -- 0 (as anticipated). Thus, it follows

that for the constraint ARL0 (z) = T to be satisfied, we need b - 0 resulting in

0/0 situation.
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lir ARLo(io) = lim (a - b - p(1 - b))(1 - 2b) log (b + p(1 - - b)

P-*O(Ap / 2a)2 (a - b) b(l - b - p( - b)) jj
b-4O

= lira 2 [a log(1 + p / b)]

p-4O(Ap / 2c)2 a

1 log(l+p/b). (5-20)
(,4p / 2ag) 2

Notice that ARL0( 0 ) approaches in the limit to a finite value.

c. Asympyotic Delay

For the limiting situation we also obtain the following

approximations:

lim E{L} = im(1- O)/p(1-b)
--40 Z-40
b---* 0 b-40

= a/p

=(l-a)/ p (5-21)

and

lim E{C} = (1- a). ARL0 (0) / p (5- 22)
i---+o
b- 0

and for the constraint ARLo(0) = T we need

p / b - T(Au)
2 /2a 2  -

- eT(4dp) 2 /2cr2  (5-23)

Substituting (5-23) in equation (5-16) for D, we obtain
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lim D = ab / p
ZO -+0

=(1 - a)b / p

= (1- a) / (e T (Ap)2 / 2c 2  (5-24)

Hence, the asymptotic average delay is given in terms of the constraints a and

T and the signal parameters Ap = pl-po and d 2.

Since the ratio Ap/ a can describe a measure for signal to noise

ratio, the average delay (5-24) can also be described as

D = (1-a) /(e(T/2XSNR) 2 ). (5-25)

Notice that in the limiting situation the average delay does not depend on p

Once again, as for Shiryayev's result (5-8), as p -* 0, a -- 1, and the delay D

approaches the limit to a finite value.

D. SUMMARY

The fact the cumsum procedure can be viewed as a process of local

minima (or respectively, maxima) enabled the use of the Brownian motion

approixmation to the optimal observation process Ze. With the aid of these

tools, ARLo(-) given by equation (5-20) and the asymptotic delay (5-25) were

derived and shown to reach finite values.
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VI. DETECTION-ESTIMATION ALGORITHM FOR NOISY DATA WITH

ABRUPT CHANGES (DISCONTINUITIES) MODELED BY THE PIECEWISE

STATE-SPACE MODEL

A. INTRODUCTION

Until now, all of the chapters dealt with problems of disorder as defined

for Types I, 2, and 3 (see Chapter 1). In this chapter we present a Type 4

problem, namely, an initial condition disruption problem. The use of state-

space models as descriptive models for the initial condition disruption allows

the joint estimation of the change iime v and the state-space parameter

representing the observed signal. This methods seems to be efficient

compared to GLR methods for certain classes of problems since the Kalman

filter gains and covariance matrix can be computed off-line if the state-space

matrices do not change in time. However, this is not the case for AR or

ARMA modeling in the state-space format.

The problem of detection-estimation or detection-smoothing of signals

with time-varying statistical characteristics is of great interest in many areas of

signal processing. In many cases, prior knowledge of the signal characteristics

can be used to model (using model-based techniques) the non-stationary

behavior. in this section, the statistical changes are modeled by piecewise

deterministic state-space equations with random initial conditions, and

measurements corrupted by additive Gaussian white noise (Cristi, 1988). A

particularly interesting class is the case of signals representable by Auto-

Regressive models with piecewise constant coefficients (Andr-Obrecht. 1988)
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Also, the class of PSK (Phase Shift Keying) signals enters this category, where

the phase of the sinusoidal carrier is shifted according to the information

(Point, 1987). For the PSK the phase shift of the sinucoidal carrier can be

modeled by change of initial condition of a state-space model that describes

the sinusoid. The goal is a non-coherent detection scheme that will recoveL

the piecewise constant phase.

For such classes of signal models, we can approach the combined

detection-estimation problem as a combination of: a) detection of the

transition points, in order to segment the data field into compact regions

having similar characteristics (for example constant phase in the PSK signal),

and b) filtering within the regions to reconstruct the original signal. In the

estimation framework the joint estimation of the change time and the model

parameters can be achieved.

Previous works (Cristi, 1990) used techniques based upon the

combination of Markov Random Fields (MRF) models, with Recursive Least

Squares (RLS) algorithms in order to estimate the model parameters within

the regions for 1D or 2D fields. Another approach (Point, 1987) used

Kalman filtering techniques in order to estimate the change in'stants in PSK

signals. Hereby we present a new technique based on Kalman filtering

techniques, which calculates the joint distribution of the measurements

and the change process (defined as the transition process) over a finite

length window. The approach presented in this section is based upon a

Maximum a-Posteriori (MAP) framework (Cristi and Aviv, 1991). The signal

of interest is described by a piece wise state-space modeling, with initial

conditions set at the beginning of each interval. By applying the Kalman
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filtering technique, the two tasks of segmentation and filtering over the

segmented regions can be achieved. The method leads to hypothesis testing.

Moreover, if the state-space matrices do not change in time, the algorithm can

be implemented at a low computation cost.

This chapter is organized as follows: Section B presents the model and

the assumptions used to describe the prior needed fo, the algorithm. Section

C presents the algorithm derivation, and finally, Section D presents

simulation results. A short summary is given in Section E.

B. MODEL DESCRIPTION

1. Problem Statement

Consider the state-space model

x (n +1) =Ax(n)+Bv(n) no change
jXlc(n) change in initial conditions.

y(n)= c x(n)+ w(n) (6-1)

where Xi.c(n) is the initial condition vector at instant n, and A,B are known

matrices, c is a known vector, v(n) and w(n) are i.i.d. white Gaussian drivers

with zero mean and known covariance Q and ar2.

v - N(O,Q)

w - N(0,o 2).

Notice the doubly stochastic nature of the process {x}. In this respect the

process can be described as a combination of two models: one, modeling the

regions corresponding to the initial condition, and one for state-space model

itself.
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Let y= ()<n), n > 0), 7(n)E (0,1) be defined as the process of transitions,
i.e.,

0 if x(n+l)= Ax(n) + v(n)
if x(n+l) = x1c

2. Model Assumptions

Assumptions on xIC(n) and 7<n) are needed.

(1) Assumptions on xic(n) are independence

P(xlc(n) I xic(n-1) ... xjc(0)) = P(xIc(n))

and that P(xlc(n)) is Gaussian with known mean and variance.

P(xic(n)) = N(x-,,P-i),

where R-1 is the a priori mean and P-1 is the covariance matrix of the vector

XIc.

(2) Assumptions on the transition process )<n) are

* The're exists an integer d such that at most only one transition occurs in

the process yduring any interval ["-d,t].

* The process y is assumed to be d-Markov, in the sense that

P((t) I )t-1) ... $(0)) = P((t) 1 )t-1) ... )$t-d))

for all t > d, which implies that the statistics of y are known from the

last d samples.

3. Probabilistic Model for the Transition Process 7(n)

In order to assign a probability measure to y, define the following

"truncated" sequence:

l= [(t-d) ... )<t)]
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where the pair (t,d+l) defines the truncation boundaries, t defines the tirre

index of the starting element, and d+i defines t.e sequence length. In a

similar way we can define any other truncated sequence.

The vector of possible realizations of yis defined by

T
ej = [e1 O)... q(d)]TE (0,1}d+1 j=-1, ... ,d

where

{10 if i=j i=O0,...,d
0ji if/ i J j = 1,...,d

and

£-1 =0.

The possible d+2 realizations of the vector Ej are of the form that at most only

a single "1" can be present at any i location (0 <_ i < d) corresponding to a

change at location i. Thus, £,s results in a change inside the window Ytd+l at

location (t-s), while E-1 is by definition the no change vector.

From the assumption of y being a Markov process with realizations

Ej, we can determine its probabilistic model as

1if 'yt-ld+l = £j j -I

P(t) = 0 1 Y t-l,d+ = (6-2)
PO if Yt-ldl = E-1

The reason behind this equation is the fact that $<t) = 0 with probability I if a

transition exists in the interval [t-d-1, t-11 which defines the previous
"sliding window." If there was no change in the previous window

(^t-l,d+l =e-), then )<t) = 0 with probability P0 , thus (t) = 1 with probability

P1 = I-PO. Figure 6-1 shows realizations of the process y.
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td I

t-d1 H t

to0..001P =1 no change within window

[ t-d,tl

to~~ ~ ~ 0;. ) t =O, change in locationt

to .. 1 1 O j=I, change in location t-I

(1 0 .. 0 ® j=d, change in location t-d
[1t

Figure 6.1. Realization Map of the Process (71
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C THE DETECION-ESTIMATION RECURSIVE ALGORITHM

in this section the detection-estimation algorithm will be presented based

on a Ma,,imum a Posteriori (MAP) probability approach in order to extract th_

transition process (A from the observations {y) and estimate the process Ix}.

Notice that the transition process {} defines the regions of the same

probabilistic nature (constant phase in the case of PSK signals), resulting in

the segmentation task. Within this framework, the transition points t are

indicated by the process { and they correspond to 1(t) = 1. The algorithm

presented here is based on a "sliding window" of length d+1 over which the

likelihood of the transitions is recursively computed using the following

lemma 1.

1. Basic Lemma

Lenuna 1. Define Yt= [y(O) ... , y(t)1

t= [(0) ... , )

Yt,d = [y(t-d-1) ..., y(t)]

and sin-. larly:

Yf¢+l = fy(t-d) ... , y(t)]

Yt~d~l = [$(t-d) ... ,

Yt-l1d+l = [y(t-d-1) ..., y(t-1)]

Yt- ¢ = [y(t-d) ..., y(t-1)]

then
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P(Yt,d+1 'Yt.d+1jYt-d-14"t-d-1) =

P(y(t0jYtl1,7t,d+I) -P(r(t)17t1,d+1, Yt-.d1)

P(y(i -d - 1)Iyt-d-u,tjt.....)P(5'(t -d -1it-d-2 ,yt-d-1)

P(yt-l,d+l -Tt-l,d+lIyt-d-2'Tt-d-2) (6 -3)

Proo-f: By Bayesian factorization:

P(Ytd+1,Ytd+IYtdI,it-d1)

-P(ytd+1! Yft,d+1 ;y,,-d-1 ;Tt-d-I) P(-ft,d+lIytd1 ;Yt-d-1) (6- 4)

The left-most probability termn can be further factored:

P ,d+lI *Yt,d+-I;Yt-d-1,it-d-1)

=P(Y(t)IYt1,YtU;it-d-1)

P(y(t -d - l)Ytd2;Yt d+1;' t-d-I1Y P(Ytd2;Ytd+I;it-I1)

because of the Markov property of the y (t) process, it is clear that in the

conditioned probability terms, once ytd+l is known, then, it-d1 is redundant.

Furthermore, since Vt1~d+1 is independent of $)0, the conditioned Probability

term in fhe numerator becomes:

P(Ytl1,d+l Yed-2;Yt11,d).
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Notice also that in the denominator y(t-d-1) is independent of yt,d,1, hence,

the left-most expression in (6-4) becomes:

P(~t-17tdl
P(y(t - d - lft-.d..2; it-d-1) (t.1,+I..d2;.Id)(65

The right-most probability term in (6-4) can be also further factored:

P(Tt,d+1IYt..d..1;t-d-1) = \;~dI;tdI

P(Yt...d-1i t-d-i)

- P(Y(t)t-1,d;!t-d-1; Yt-d-1) P(Yt-l,d; 5'(t - d - 1)Ii[t-d_2; Yt-d-1) x

x P(. t- d - 2; Yt- d- 1) (6-6)

P(Y(0j/(tlf-1,d; it-d-1, Yt-d-l )

P(5'(t - d - 1A)It.-d-2; Yt-d--i) P(Yt..l,d; 5'(t - d - 11td_2; Yt-d1)

Therefore, inserting (6-5) and (6-6) into (6-4) yields the desired recursion

(6-3). 0

By the recursion (6-3) we can update the statistics of the processes {y)

and {7} over the interval [t-d,t] conditioned on past values of these processes.

2. Likelihood Function of the Transition Process

Using the probability model of the last section, the transition process

can be estimated at time (t-d), i.e., the edge of the window, on the basis of

the observations up to time t, (i.e., using the data within the window [t-d,t]),

by using the Kalman filter technique.

The rationale behind this can be explained as follows: Suppose there

was no (true) change in the signal's model. If the initial condition of the filter
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is changed at any time instant within the interval [t-d,t], then there will be a

probabilistic mismatch between the true signal and the estimated one (See

Figure 6-2a). Suppose now that the initial condition is changed at the same

time instant the true change occurred, then, by forcing the change to be

evaluated at the edge of the sliding window, namely at time t-d, will create a

probabilistic match between the true signal and the predicted signal that relies

on the maximum number of available observations (d) (See Figure 6-2b.).

Estimated Signal

True Signal

a

b

Figure 6.2. Relationship between Estimated Signal and True Signal
a. Probabilistic Mismatch

b. Probabilistic Match
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The proposed algorithm can be viewed in light of this interpretation

as follows: at each time instant t we calculate d+2 likelihood terms lt(ej), of all

the possible realizations of (A, each one of these realizations is associated

with the assumption that the change occurred at the d+1 possible locations

within the window [t-d,t], and one corresponds to the "no change"

hypothesis (see Figure 6.3).

4 d-I Eo
t-d t-d t-2 H- t
I Ii I I -

•

, E2
I (Ed(e 2)

I II

ii(Ed)

Figure 6.3. Calculating of d+2 Likelihood Terms

The algorithm "looks" at all the possible realizations of {y} within the

window [t-d,t] and decides about a change in a way which will be described in

the next section.

3. Recursive Detection

The recursive detection algorithm is based upon the likelihood terms

as described in the last section.

Define the MAP estimate of y as:
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d= r(6- 7)
,fd) a 7iax{P( y(t - d)IYt, jt-d-1)}.(6 7

By standard Bayesian factorization, it is easy to see that

P(Yt,d+I; y(t - d)jj-d-;Yt-d-I)

- P(y(t - d)!Yt ,!-d-,) -P(Yt,d!Yt-d-1,it-d-i)

Since the rightmost term does not depend on 7(t-d), it is easy to see that

maximization of (6-7) is equivalent to the maximization of

5'(t -d) = arLrnax{P(Y: d+1,y(t -d~Yt-d.1Iiu-d.i)I (6-8)

The likelihood term in (6-8) can be recursively determined from the

probability relation given by Lemma (6-3).

In order to achieve the maximization efficiently, recall that Yt,d

assumes only the realizations j(j = -1, ..., d) since, at most one transition

occurs within any interval [t-d,t], thus, the probability of "no change at (t-d)"

()<t-d) = 0) is the union of all the possible mutually exclusive events of a

change occurring at each of the other time instants within the window (j = 1,

d-1) including the event of no change (j = -1).

The hypothesis of no change is given by

d-1
H0 : P(Yt,d4 ,lY(t-d)=OIYt.d-l, -d_,) .ldt() j) (6-9)

j=-'

and the hypothesis of change is given by

H: P(Yt,d+l, (t-d) = llYt-d-1, t-d-) = lt(Qa) (6-10)

where
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,-= P(Y1,dptd+1 = iYfd-1,it-d-1) j = -]..,d. (6-11)

Hence, the maximization (6-7) becomes hypothesis testing problem

d-I H0
Xi t (e j) ]> l,(E ) (6-12)

j=-I H1

where each likelihood term is given by (6-11) and calculated via the recursion

(6-3). Equation (6-12) evaluates the likelihood I(Ed) of a change at t-d

against all the other possible changes within the window. Hence, the vector ej

can also be viewed as an indicator vector of the change assumption (or re-

initialization location of the Kalman filter).

4. Implementation

By careful examination of the recursion (6-3), it is clear that the

denominator is constant with respect to the transition sequence Yt,d.

Furthermore the right-most term in the numerator is given by (see Figure

6-1)

I if Yt-l,d+l = j J -1

P(Y(t)Yt-,d+;Yt-d-l)= PO if Yt-1,d+1 =-1 Y(t) = 0

Pl if Yt-l,d+l =-1 y(t) = 1

Now, notice that the left-most term in the numerator of (6-3) is computed

directly from the Kalman filter equations, since P(Y(t)IYt..l,7td+l = Cj)is equal

to P(y(t)Y,.) for j >_ 1, given that the filter was reinitialized at time t-j. Thus,

the "past" sequence Yt-1 is the "truncated past": (y(t-1) ... y(t-j)) and contains

all the past observations since the filter's initialization. Hence, calculating

(6-11) via (6-3) becomes:

192



= C P(Y(t),y_(l,_)P(Y(t)7t-ld+l;yt.ld+lI) (6-13)

j=l,...,d.

where C is a constant independent of ytd.

Using the realization map of { (Figure 6.1), the update phase of the

algorithm can be calculated as follows:

Update:

1. If ,(t-d-1) = 0, then

j = -1: It(E.-) = C.P(y(t) I Yt-1 , YtA+l = E-1)" P0" It-1(-1)

j = 0: I1(o) = C'P(y(t)I Yt, Ytd+l = so) P1 •it-i(E-1 ) (6-14)

for 1 <5j:5 d

lt(Ej) = C.P(y(t) I Yt- 1, ftd+l = Fj) "lt-I(j-i)

2. If ,(t-d-1) = 1, then

It(E-1) = C.P(y(t) I Yt-1, ytd+l = E -) -/t-i(Ed) (6-15)

it(Ej) =0 Vj -1.

Change detection:

at each time instant t check for:

d-1 (t-d) = 0 no change
lt(Ej) it(Ed) (6-16)

j=-I (t - d) = 1 change

The procedure introduced above can be represented on the graph shown in

Figure 6.4.

At each time instant t, the nodes marked as j = -1, 0, ..., d refer to

the realizations of y jdl and the corresponding likelihood terms It (sj). These

realizations of the likelihood terms are updated at each node according to

equations (6-14) and (6-15).
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t-d+1 t-d t-d- -1 t
* * * I - timie

initialize0

It -d-1C

d-1

I -1(d 4(d -1)

d

It(d)

node

Figure 6.4. Flow Graph of the Detection Algorithm
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Updating of these equations is done on the basis of the transition

probability, i.e., the conditional probability terms P(y(t) I Yt-1j) and is

determined by the well known properties of the Kalman filter (Anderson and

Moore, 1979)

Let xj be the state vector of the state-space model at node j. At

each node j of the graph, we update the estimate of xj, (i.e., ij) and

consequently the probability terms are as follows:

1. if j =1, ..., d then

Time update (use estimate of filter j-1):

ij(tt- 1)-- Aij-1(t - lit -1)

Vj(tlt-1) = AVj 1-(t-lIt-1)A T +BQB T (6-17)

Observation Update (Filtering):

i(t It)= -- jtit - 1)+ lj(t)[Y(t)- Tj(t~t-_ 1)]

I j(t)- =Vj(tlt- j). .[ Vj(t~t - )c + C ]-

Vtt =[I - lj(t). cT1vj(ftt - 1). (6-18)

2. if j = 0, then:

initialize filter.

io(tlt) = ij

V0(tlt) = P-1.

x_1 and P- 1 being the initial state and initial filter error covariance

matrix respectively.
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3. if j = -1, then:

&L(t I t) is updated as in (6-17), (6-18) with the index change (see Figure

6.1)

(tIt i_~t - lit -1) if (t-d-l )= 0
i-~l M-Lt - 't -1)  if (t - d-1) = 1.

The state-space representation and the Kalman filter yields an efficient

algorithm for the desired transition distribution P(y(t) I Yt-1,ft4d+l = ej ),

ft(j) P(Y(tj Yt-I'Yt,d+l = E)(2rs1 ())" exp[~t (yt - 1 (l )

sj(t)= cT Vj(tlt-1)c+ 02  (6-19)

namely, the desired distributions fteQ) are Gaussian with mean cTij(t I t-1) and

covariance si(t). Hence, the likelihood terms (6-14) and (6-15) can be updated

on-line by the following equation:

Qc) = C. Pi p(y(t- )
i=0

f

= C.- P1I-If,_,(j- 0i) : _j_5 d.
i=O

The presented algorithm lends itself to a parallel structure

implementation. Furthermore, if the state-space matrices are not time

dependent, the Kalman filter gains l and covariance matrices Vj can be

precomputed, since, in this case the filter's performance is a priori known and

not data dependent. Hence, lookup tables can be prepared resulting in a

simple computational cost algorithm.
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D. RESULTS

The algorithm was implemented and tested on different data structures as

piecewise constant models, PSK models and AR models in different signal to

noise ratios. The results obtained show that the transitions are estimated by

the algorithm.

Figure 6.5 illustrates the results obtained for detecting the transitions in

piecewise constant signals represented by the state space model

x(n+1) = x(n)

y(n) = x(n)+ w(n)

lie II,

Figure 6.5. The joint Detection-Estimation of a Piecewise Constant Signal.

a. Noisy Data
b. Filtered Data
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Figure 6.6 illustrates the results obtained for an PSK signlal with input SNR of

of -3dB. Figure 6.7 illustrates the results obtained for zn PSI( signal with

input SNR of -9dB.

iii4 *!
~ I I

1 l~l i [ I

Fiue66 S inlwt I SNRof 3d

a.NisyDt
b.FlerdDt

c. Est~~imae rniin

b9



Figre6.. SKSina wthInutSN o -dB
a.NiyDt

. Nisyre Data

c. Estimated Transitions
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Figure 6.8 illustrates cata obtaired by using an AR model. Figure 6.9

illustrates the estimated transitions while Figures 6.10 and 6.11 illustrate the

true and estimated AR parameters.

Figure 6.8. The OrigLtl. AR Data

Figure .. Estimated Transitions

200



Figure 6.10. True X1 and Estimated X1 AR Parameter

----------- -

Figure 6.11. True X2 and Estimated X2 AR Parameter
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E. SUMMARY

The problem of joint detection-estimation is addressed in this chapter.

The state-space representation of the signal model allows joint detection

estimation by using the Kalman filter properties. Furthermore, the detection

is completely asynchronous. Since the algorithm is based on optimal

estimation techniques, it is expected to be able to detect signals in the presence

of very low SNR. However simulation results do not permit this type of

conclusion. Detailed performance analysis of this algorithm is not available

now and requires more research.
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VII. CONCLUSIONS

This dissertation investigated different types of disorder problems by

using sequential procedures for on-line implementation. The problem was

considered within the framework of detecting changes in statistical models of

an observed random process when the disorder can occur at unknown times.

The focus of this work was on quickest detection methods for cumsum

procedures implemented for different parametric and nonparametric

nonlinearities. In this context, several issues remain unresolved, namely, for

a multiple disorder problem or for transient detection a critical issue is the

joint estimation of disorder time and the model parameters. There is much

more to do in investigating this problem by implementing recursive

identification procedures together with detection procedures.

In Chapter III, the concept of detecting energy changes in the Energy

Spectral Density of a signal reflect different spectral signatures and is of

interest in many applications. More work can still be done in the theoretical

domain in order to examine the coupling effects between window sizes,

averaging methods within a window with the root location and the minimal

SNR needed for detection. Moreover, modern spectral energy estimators

might be considered rather than the transitional periodogram.

The detection algorithm which was presented in Chapter VI has an

advantage of being noncoherent with respect to coherent detectors for PSK

type signals. Even though the algorithm is optimal in the sense that optimal

techniques (Kalman filtering) were used, there is still room for investigating

its performance as a function of window length. Also, the merits of this
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approach should be compared to traditional detection methods of PSK signals

to check the tradeoff between noncoherent versus coherent detection.

The disorder problem can be considered a local problem. Thus,

conventional time frequency methods for detecting and estimating the

change parameters have the problem of the tradeoff between the time-

frequency resolution. It seems that the wavelet representation which has

become popular recently has the potential to resolve this time-frequency

resolution problem.

Finally, the research can be extended to the situation where the

measurements are dependent (Sadowsky, 1989) for providing a parallel

framework for evaluating Page test performance.
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APPENDIX. BASIC CONCEPI'S OF HYPOTHESIS TESTING AND

DETECTION THEORY

(FROM KASSAM, 1988)

Let X = (X 1, X 2, ..., X) be a random vector of observations with joint

probability density function (pdf) P,(x 10), where 9 is a parameter of the

density function. Any specific realization x = (x1, x2, ..., xn) of X will be a point

in 9", where 91 is the set of all real numbers. In binary hypothesis-testing

problems we have to decide between one of two hypotheses, which we will

label as H0 and H 1 about the pdf Px(x 10), given an observation vector in 91".

Let e be the set of all possible values of 0; we usually identify H0 with one

subset 9Ho of 6 values and H, with a disjoint subset epl, so that 9 = eH 0 u

ell. This may be expressed formally as

H0 : X has pdf Px(xi) with 0 E eH0 (A- 1)

HI: X has pdf P(xlt) with 6 r e (A- 2)

If eHo and ell, are made up of single elements, say 19H0 and 9 H1, respectively,

we say that the hypotheses are simple; otherwise the hypotheses are

composite. If e can be viewed as a subset of 91!' for a finite integer p, the Fdf

P,(x i e) is completely specified by the finite number p of real components of 0,

and we say that our hypotheses are parametric.

A test for the hypothesis H0 against H1 may be specified as a partition of

the same space S = 9," of observations into disjoint subsets SHo and SH1 , so

that x falling in SHo leads to acceptance of H0 , with H1 accepted otherwise.

This may also be expressed by a test function which is defined to have value
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6(x) = I for xE S i and value 8(x) = 0 for xE SHo. The value of the test

fu-.cLIon is defined to be the probability with which the hypothesis H1 , the

alternative hypothesis, is accepted. The hypothesis H0 is called the null

hypothesis.

More generally, the test function can be allowed to take on probability

values in the closed interval [0,1]. A test based on a test function taking on

values inside [0,11 is called a randomized test.

The power function T 0 13) of a test based on a test function 8 is defined

for e E ellou H1 as

P(0I3)=1E I3(x)I (A- 'I

= J6(x)P,,(xi6)dx.

Thus it is the probability with which the test will accept the alternative

hypothesis H 1 for any particular parameter value 6. When 6 is in ell the

value of P01 3) gives the probability of an error, that of acceoting H, when H0

is correct. This is called a type I error or the probub,,Ity of false alarm, and

depends on the particular value of 6 in ell. The size of a test is the quantity

a= sup P(1I1)

which may be considerei as being the best upper bound on the type I error

probability of the tPst.

Similarly, we define the Operating Characteristic (OC) of a test Q(O6"),

based on a test function 3, as the probabitity with which a test will accept the

null hypothesis Ho for any particular parameter value 0. When 0 is in ell

the value of Q(81 b) gives the confidence (I-a), that of accepting Ho when Ho
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is corre.t. When 6 is in 9HI the value of Q(OI 3) gives the probability of miss

(3), that of accepting H0 when H1 is correct. This is called a type II error and

depends on the particular value of 0 in 6H1 Figure A.1 illustrates a typical OC

functic-n of a test.

Figure A.1. A Typical Operating Characterisfic Function of a Test

In signal detection the null hypothesis is often a noise-only hypothesis,

and the alternative hypothesis expresses the presence of a signdl in the

observations. For a detector D implementing a test function 3(x) the power

function evaluated for any 0 in 1 gives a probability of detection of the

signal. Thus, we will use the notation P(6 I D) for the power function of a

detector D, and in discussing the probability of detection at a particular value

of the parameter 0 in eH 1 (or for a simple alternative hypothesis H1) we will

use for it the notation PD. The size of a detector is often called its false-alarm
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probability. This usage is encountered specifically when the noise-only null

hypothesis is simple, and the notation for this probability is PFA.

A. MOST POWERFUL TESTS AND THE NEYMAN-PEARSON LEMMA

Given a problem of binary hypothesis testing such as defin_2d by (A-1) and

(A-2), the question arises as to how one may define and then construct an

optimum test. Ideaily, one would like to have a test for which the power

function TO 1 8) has values close to zero for 0 in En0, and has values close to

unity for 9 in E01- These are, however, conflicting requirements. We can

instead impose the condition that the size a of any acceptable test be no larger

than some reasonable level ao, and subject to this condition look for a test for

which P(O I 3), evaluated at a particular value 0H, of 0 in f011, has its largest

possible value. Such a test is most powerful at level ao in testing H0 against

the simple alternative 0 = C911 in 9H1; its test function &*(x) satisfies

sup P(Ol3*)<_ao (A-5)
OE 191t0

P(OH,115) !P(OH, 13) (A -6)

for all other test function 6(x) of size less than or equal to a0. In most cases of

interest a most powerful level cco test satisfies (A-5) with equality, so that its

size is a = o:0.

For a simple null hypothesis Ho when 9 = 0110 is the only parameter

value in 191 0 , the condition (A-5) becomes T(0 1 1 8) < ao or PFA 5 0, subject to

which PD at 6 = 011 is maximized. For this problem of testing a simple Ho

against a simple HI, a fundamental result of Neyman and Pearson (called the
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Neyman-Pearson lemma) gives the structure of the most powerful test. We

state the result here as a theorem:

Theorem 1: Let (x) be a test function of a the form

Ix ,P(xI OH1 ) >tP. XxI6 0 )

3(x)= r(x) P. PXx I= tPXxe) (A -7)j 0 , XIe19,)<tX(xieH0)

for some constant t > 0 and some function r(x) taking on values in [0,1). Then

the resulting test is most powerful at level equal to its size for H0 : 0 = OH0

versus Hj: 0 = OH1.

In addition to the above sufficient condition for a most powerful test it

can be shown that conversely, if a test is known to be most powerful at level

equal to its size, then its test function must be of the form (A-7) except

perhaps on a set of x values of probability measure zero. Additionally, we

may always require r(x) in (A-7) to be a constant r in [0,1]. Finally, we note

that we are always guaranteed the existence of such a test for H0 versus H1 , of

given size a [Lehmann, 1959, Ch. 3].

From the above result we see that generally the structure of a most

powerful test may be described as one comparing a likelihood ratio to

constant threshold,

Px(xeH > 
(A )

in deciding if the alternative H1 is to be accepted. If the likelihood ratio on the

left-hand side of (A-8) equals the threshold value t, the alternative H1 may be

accepted with some probability r (the randomization probability). The
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constants t and r may be evaluated to obtain a desired size a using knowledge

of the distribution function of the likelihood ratio under H0 .

When the alternative hypothesis H1 is cornpc site we may lock f, r a test

which is uniformly most powerful (UMP) in testing H0 against H 1, that is, one

which is most powerful for Ho against each O= OH1 in eH1 . While UMP tests

can be found in some cases, notably in many situations involving Gaussian

noise in signal detection, such tests do not exist for many other problems of

interest. One option in such situations is to place further restrictions on the

class of acceptable or admissible tests in defining a most powerful test; for

example, a requirement of unbiasedness or of invariance may be imposed

[Lehmann, 1959, Ch. 4-6]. As an alternative, other performance criteria based

on the power function may be employed. We will consider one such

criterion, leading to locally optimum or locally most powerful tests for

composite alternatives, in the next section. One approach to obtaining

reasonable tests for composite hypotheses is to use maximum-likelihood

estimates 6 H0 and H1 of the parameter 6, obtained under the constraints of

0 E 9H0 and 6 r eH1 , respectively, in place of 9H0 and eH, in (A-8). The

resulting test is called a generalized likelihood ratio (GLR) test or simply a

likelihood ratio test.

B. LOCAL OPTIMALITY AND THE GENERALIZED NEYMAN-PEARSON

LEMMA

Let us now consider the approach to construction of tests for composite

alternative hypotheses. In this approach attention is concentrated on

alternatives 9 = OH1, in 9,1, which are close, in the sense of a metric or
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distance, to the null-hypothesis parameter value 0 = H0 o . Specifically, let 0 be

a real-valued parameter with value 9 = 90 defining the simple null hypothesis

and let 0 > 0o define the composite alternative hypothesis. Consider the class

of all tests based on test functions 8(x) of a particular desired size a for 0 = 0o

against 9> 00, and assume that the power function (01 16) of these tests are

continuous and also continuously differentiable at 0 = 00. Then if we are

interested primarily in performance for alternatives which are close to the

null hypothesis, we can use as a measure of performance the slope of the

power function at 6 = 0o, that is

P, (00 13) P P(0105)0=Oo0 (A -9)

=-P(6 o
dO

From among our class of tests of size a, the test based on 3*(x) which

uniquely maximizes V(00 I e) has a power function satisfying

P'(el3*)tP(ei), o < e< ax (A-10)

for some rn9 ax > 00. Such a test is called a locally most powerful or locally

optimum (LO) test for 0 = 0o against 0 > 0o. It is dearly of interest in situations

such as the weak-signal case in signal detection, when the alternative-

hypothesis parameter values of primary concern are those which define pdf's

Px(x 10) close to the null-hypothesis noise-only pdf Px(x 16I0).

The following generalization of the Neyman-Pearson fundamental result

of Theorem 1 can be used to obtain the structure of an LO test:
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Theorem 2: Let g(x) and hj(x), h2(x), ..., h,,,(x) be real-valued and integrable

functions defined on 91". Let an integrable function 3(x) on 91" have the

characteristics

m

1 , (x)> tihj(x)
i=1
m

,(x)= r(x) , g(x)= tihi(x) (A-11)
i=1

0 , g(x) < ti h(x)
i=1

for a set of constants ti -> 0, i = 1, 2, ... , m, and where 0 < r(x) < 1. Define, for

i = 1, 2, ..., m, the quantities

ai= fJ(x)hi(x)dx. (A- 12)

9VIl

Then from within the class of all test functions satisfying the m constraints

(A-12), the function 5(x) defined by (A-11) maximizes f5(x)g(x)dx.

A more complete version of the above theorem, and its proof, may be

found in [Lehmann, 1959, Ch. 3]; Ferguson [1967, Ch. 5] also discusses the use

of this result.

To use the above result in finding an LO test for 0 = 0 against 0 >60

defining eH 0 and es1 in (A-i) and (A-2), respectively, let us write (A-9)

explicitly as

P'( 013) = d f(x)P
9n . 0(A-13)

= 3(x) d P(xO) e=,dx
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assuming that our pdf's are such as to allow the interchange of the order in

which limits and integration operations are performed. Taking m = 1 and

identifying hi(x) with P,(x 100) and g(x) with -dPx(xIGO=Oo in Theorem
d in heorem2, we

are led to the locally optimum test which accepts the alternative Hj: 0 > 00

when

d p"(x'l )o
e 100>0 (A-14)PX (XI00)

where t is the test threshold value which results in a size-a test satisfying

E{3(X)IH:6 = 001 = a. (A- 15)

The test of (A-14) may also be expressed as one accepting the alternative

when

d- In{IP.x(xIO)JIO= 00 > t. (A - 16)
dO

Theorem 2 may also be used to obtain tests maximizing the second

derivative !P'(o 16) at 0 = Oo. This would be appropriate to attempt if it so

happens that T'( 00 13) = 0 for all size-a tests for a given problem. The

condition 2P'(00 I ) = 0 will occur if -PX(xIO) =0 is zero, assuming the
dO I00

requisite regularity conditions mentioned above. In this case Theorem 2 can

be applied to obtain the locally optimum test accepting the alternative

hypothesis H 1:0 > 00 when

dO2  
o= Ooi

>t. (A-17)
P(xe)
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One type of problem for which Theorem 2 is useful in characterizing

locally optimum tests is that of testing 0 = 0o against the two-sided alternative

hypothesis 0 * 00. We have previously mentioned that one can impose the

condition of unbiasedness on the allowable tests for a problem. Unbiasedness

of a size-a test for the hypotheses H0 and H 1 of (A-I) and (A-2) means that the

test satisfies

P(01 8) 5a, all 1 Eej 0  (A-Is8)

P(016) < a, all e8 H1  (A- 19)

so that the detection probability for any OH1 E eH1 , is never less than the size

a. For the two-sided alternative hypothesis 0 * Oo, suppose the pdf's Px(x i e)
are sufficiently regular so that the power functions of all tests are twice

continuously differentiable at 0 = 00. Then it follows that for any unbiased

size-a test we will have P(6016) = a and 0'(o 16) = 0. Thus, the test function

of a locally optimum unbiased test can be characterized by using these two

constraints and maximizing '(00 16) in Theorem 2. Another interpretation

of the above approach for the two-sided alternative hypothesis is that the

quantity 0) = (9-0)2 may then be used as a measure of the distance of any

alternative hypothesis from the null hypothesis 0 = 00. We have

d coIO-0, d0
1

1 1P"(0 0 18) (A- 20)
2
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if !(P 1 13) is zero, for sufficiently regular pdf's Px(x 10). Thus if T(00 I b) is zero

for a class of size-a tests, then maximization of P"(00 1 ) leads to a test which is

locally optimum within that class.

In this appendix we are concerned with problems where the noise density

function P is completely specified, as a special case of the general parametric

problem where P may have a finite number of unknown parameters (such as

the noise variance). Our detection problem can be formulated as a statistical

hypothesis-testing problem of choosing between a null hypothesis Ho and an

alternative hypothesis H1 describing the joint density function Px of the

observation vector X, with

H0 : Px(x)=H'P(xi) (A-21)
i=1

n
HI: Px(x)=I-IP(xi-6si), sspecified,any9>0. (A - 22)

i=1

Here s is the vector (sI, s2, ..., s.) of signal components. Note that we are

considering parametric hypotheses which completely define Px to within a

finite number of unknown parameters (here with only 9 > 0 unknown under

the alternative hypothesis). Let us now proceed to obtain the structures of

tests for Ho versus H1.

C. LOCALLY OPTIMUM DETECTION AND ASYMPTOTIC OPTIMALITY

Since the alternative hypothesis H1 is not a simple hypothesis, the signal

amplitude value being unspecified, we cannot apply directly the fundamental

lemma of Neyman and Pearson to obtain the structure of the optimum

detector for the detection problem. For non-Gaussian noise densities it is also
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generally impossible to obtain UMP tests for the composite alternative

hypothesis H1 .

To illustrate the difficulty, consider the special case where P is specified to

be the double-exponential noise density function defined by

P(x) = ae-a IxI,a 2!O. (A - 23)

2

The likelihood ratio for testing H0 versus H1 for a particular value 6= 0 0 > 0,

is

n P(xi - 60 si)
L(X)== Pi " (A - 24)

This now becomes
n

-a YX(fxi-Oosjil-Ijx)
L(X) = e i- (A-25)

giving
11

in L(X) = aY(xi l - lxi - Osil). (A - 26)
i=1

Thus for given = 0, the test based on

n
,f.(X) = I.(xiI- xi - 0oSi )  (A - 27)

i=1

is an optimum test, since the constant a is positive. The optimum detector

therefore has a test function defined by
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3(X)= r (X) = t (A- 28)

0 ;(X) < t

where the threshold t and randomization probability r are chosen to obtain

the desired value for the false-alarm probability PFA, so that the equation

E{8(X)IH 11 = PFA (A - 29)

is satisfied. Notice that we do not need randomization at ,(X) = t if this

event has zero probability under H0.

We can express ) (X) of (2-19) in the form

n
,(X)= ,I(xi; osi) (A- 30)

i=1

where the characteristic I is defined by

I(x; 9s)= IxI- Ix- 6s1. (A - 31)

This is shown in Figure A.2 as a function of x and depends strongly on e, so

that ;(X) cannot be expressed in a simpler form decoupling 00 and the xi. For

an implementation of the test statistic A(X) the value 0 of 9 must be known,

and a UMP test does not exist for this problem for n > 1.

One approach we might take in the above case is to use a generalized

likelihood ratio (GLR) test, here obtained by using as the test statistic 2'X) of

(A-27) with 60 replaced by its maximum likelihood (ML) estimate under the

alternative hypothesis H1. This maximum-likelihood estimate OML is given

implicitly as the solution of the equation
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si sgn(xi - 6ML si) = 0 (A - 32)
i=1I

where

sgn(x) 0 x=O (A- 33)

provided that the solution turns out to be non-negative; otherwise, OML = 0.

Thus the implementation of the GLR test is not simple. In addition, the

distribution of the GLR test statistic under the null hypothesis is not easily

obtained.

I(x,;- s)

s

Figure A.2. The Characteristic l(x;9.) of Equation A-31

In the general case, for any noise density function P, the optimum detector for

given 6 = 00 > 0 under H1 can be based on the test statistic
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A (X) = lnL(X)

- Xln 
(A- 34

i -1 P(xi)

which is of the form of ,(X) of (A-30). But again, e0 must be specified and the

detector will be optimum only for a signal with that amplitude. The GLR

detector can be obtained if the ML estimate 6 ML of 0 can be found under the

constraint that 6 ML be non-negative. Once again, in general this will not lead

to an easily implemented and easily analyzed system.

D. LOCALLY OPTIMUM DETECTORS

The above discussion shows that we have to search further in order to

obtain reasonable schemes for detection of a known signal of unspecified

amplitude in additive non-Gaussian noise. By a "reasonable" scheme we

mean a detector that is practical to implement and relatively easy to analyze

for performance, which should be acceptable for the anticipated range of input

signal amplitudes. Fortunately, there is one performance criterion with

respect to which it is possible to derive a simple and useful canonical

structure for the optimum detector for our detection problem. This is the

criterion of local detection power, and leads to detectors which are said to be

locally optimum.

A locally optimum (LO) or locally most powerful detector is one which

maximizes the slope of the detector power function at the origin (0 = 0), from

among the class of all detectors which have its false alarm probability. Let Aa

be the class of detectors of size a for H0 versus H 1. In our notation any

detector D in Aa is based on a test function 6(X) for which
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E{3(X)IH1} = a. (A - 35)

Let Pd(O I D) be the power function of detector 13 that is,

P6(8ID) = E{8(X)H 1}. (A - 36)

Formally, an LO detector DLO of size a is a detector in ,4 a vhich satisfies

max- d(OID) = Pd(OIDLO (A =37)
DEAa dO d0=0 O0=0"

It would be appropriate to use a locally cptimum detector when one is

interested primarily in detecting weak signals, for which e under the

alternative hypothesis .I, remains cluse to zero. The idea is that an LO

detector has a larger slope for its power function at 1 = 0 than any other

detector D of the same size which is not an LC, detector, and this will ensure

that the power of the LO detector will be larger than that of the other detector

at least for 0 in some non-null interval (O,Omax), with 9max depending or. D.

This is illustrated in Figure A.3. Note that if an LO detector is not unique,

then one may be better than another for 0 > 0. There is good reason to be

conc, ned primarily with weak-signal detection. It is the weak signal that one

has the most difficulty in detecting, whereas most ad hoc detection schemes

should perform adequately for strong signals; after all, the detection

probabnility is upper bounded by unity.
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Figure A.3. Power f anctions of Optimum and LO Detectors

To obtain explicitly the canonical form of the LO detector, we can apply

the generalized Neyman-Pearson lemma of Section A.2. Now the power

function of a detector D based on a test function 8(X) is

n
Pd(OID)= f 6(x)flP(xi - ojsdx (A -38)

90n i=1

where tie integration is over the n-dimensional Euclidean space 9i". The

regularity Assumptions allow us to get
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d d2
Pd(OID) = J 6(x)- f P(-s&) dx

0=0 9 =0

6 E t(x)[ si P'(xi)] 1

f I -i-j l 39>i
E {3(X)[X-si P'(xi))IHO (A -39)

from this it foilows, from the generalized Neyman-Pearson lemma, that a

locally optimum detector D, is based on the test statistic

-xSi P(Xi)

i&1

= ]Si gLo(Xi) (A - 40)

where g& is the function defined by

gt 0(X) = (x) (A-41)

P(x)

Note that we may express ke,(X) as

,AtoNx =-I lP(x; -e0s;
i=1 6=0

= d n P(xi-Osi) (A-42)

d6 ii P(Xi) 0=0

from which the LO detector test statistic (multiplied by 0) is seen to be a first-

order approximation of the optimum detector test statistic given by A-34.
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For the double-exponential noise density of (A-23) we find that ge0 is

given by

g1o(x) = a sgn(x). (A - 43)

Note that the optimum detector for 0 = 00 in this case is based on the test

statistic ,a(X) of (A-27). Similarly, for a zero mean Gaussian density with

variance cr2 we have

x
gt(x) = (A-44)
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